Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104211    DOI: 10.1088/1674-1056/acec41
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world

Zhi-Yuan Li(李志远) and Jian-Feng Chen(陈剑锋)
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
Abstract  Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. As the building block of the theory, we use the microscopic polarizability to describe the optical response of a single atom, solve the transport of electromagnetic wave through a single atomic layer under arbitrary incident angle and polarization of the light beam, construct the single atomic layer transfer matrix for light transport across the atomic layer. Based on this transfer matrix, we get the analytical form of the dispersion relation, refractive index, and transmission/reflection coefficient of the macroscopic medium. The developed theory can handle single-layer and few-layers of homogeneous and heterogeneous 2D materials, investigate homogeneous 2D materials with various vacancies or insertion atomic-layer defects, study compound 2D materials with a unit cell composed of several elements in both the lateral and parallel directions with respect to the light transport.
Keywords:  atomic-scale electromagnetic theory      two-dimensional materials      transfer matrix method  
Received:  27 May 2023      Revised:  19 July 2023      Accepted manuscript online:  01 August 2023
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
Fund: Project supported by the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), the Science and Technology Project of Guangdong Province of China (Grant No. 2020B010190001), the National Key R&D Program of China (Grant No. 2018YFA0306200), and the National Natural Science Foundation of China (Grant No. 11974119).
Corresponding Authors:  Zhi-Yuan Li     E-mail:  phzyli@scut.edu.cn

Cite this article: 

Zhi-Yuan Li(李志远) and Jian-Feng Chen(陈剑锋) Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world 2023 Chin. Phys. B 32 104211

[1] Jackson J D 1998 Classical Electrodynamics 3rd edn. (New Jersey: Wiley)
[2] Born M and Wolf E 1999 Principles of Optics 7th edn. (Cambridge: Cambridge University Press)
[3] Yeh P 1988 Optical Wave in Layered Media (New York: Wiley)
[4] Li Z Y and Ho K M 2003 Phys. Rev. E 67 046607
[5] Li Z Y and Ho K M 2003 Phys. Rev. B 68 155101
[6] Kunz K S and Luebbers R J 1993 The Finite Difference Time Domain Method for Electromagnetics (Boca Raton: CRC Press)
[7] Dhatt G, Lefrancois E and Touzot G 2012 Finite Element Method (New Jersey: Wiley)
[8] Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D and Johnson S G 2010 Comput. Phys. Commun. 181 687
[9] Dickinson E J F, Ekström H and Fontes E 2014 Electrochem. Commun. 40 71
[10] Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photonics 8 899
[11] Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z and Bao X 2016 Nat. Nanotechnol. 11 218
[12] Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Moreno L M and Koppens F 2017 Nat. Mater. 16 182
[13] Liu Y, Huang Y and Duan X 2019 Nature 567 323
[14] Zhang L, Wu F, Hou S, Zhang Z, Chou Y H, Watanabe K, Taniguchi T, Forrest S R and Deng H 2021 Nature 591 61
[15] Pinilla S, Coelho J, Li K, Liu J and Nicolosi V 2022 Nat. Rev. Mater. 7 717
[16] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[17] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[18] Kittel C 1976 Introduction to Solid State Physics 5th edn. (New York: Wiley)
[19] Rössler U 2004 Solid State Theory (Berlin: Springer)
[20] Jackson J D 1998 Classical Electrodynamics 3rd edn. (New Jersey: Wiley) Sections 6.6 and 4.5
[1] Local density of optical states calculated by the mode spectrum in stratified media
Ting Fu(傅廷), Jingxuan Chen(陈静瑄), Xueyou Wang(王学友), Yingqiu Dai(戴迎秋), Xuyan Zhou(周旭彦), Yufei Wang(王宇飞), Mingjin Wang(王明金), and Wanhua Zheng(郑婉华). Chin. Phys. B, 2023, 32(4): 040204.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Magnetic and magnetotransport properties of layered TaCoTe2 single crystals
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2023, 32(12): 127303.
[5] Multifunctional light-field modulation based on hybrid nonlinear metasurfaces
Shuhang Qian(钱树航), Kai Wang(王凯), Jiaxing Yang(杨加兴), Chao Guan(关超), Hua Long(龙华), and Peixiang Lu(陆培祥). Chin. Phys. B, 2023, 32(10): 107803.
[6] Activated dissociation of H2 on the Cu(001) surface: The role of quantum tunneling
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(10): 108103.
[7] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[8] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[9] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[10] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[11] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[12] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[13] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[14] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[15] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
No Suggested Reading articles found!