CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Crystal growth of CeMn0.85Sb2: Absence of magnetic order of Ce-sublattice |
Yong Li(李勇)1,2,3, Shan-Shan Miao(苗杉杉)1, Hai Feng(冯海)1,4,†, Huai-Xin Yang(杨槐馨)1,3,‡, and You-Guo Shi(石友国)1,2,4,§ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Single crystals of CeMn$_{0.85}$Sb$_{2}$ have been successfully synthesized by using the Bi as flux. Analysis of single crystal x-ray diffraction data confirms that CeMn$_{0.85}$Sb$_{2}$ crystallizes in the HfCuSi$_{2}$-type structure with the space group $P4/nmm$ (No. 129). In the case of $H\parallel c$, CeMn$_{0.85}$Sb$_{2}$ displays a robust antiferromagnetic transition at $\sim 160 $ K for Mn-sublattice, and there is no sign of magnetic order regarding Ce-sublattice. In the case of $H\bot c$, the Mn-sublattice shows signs of magnetic order at 160 K and 116 K, indicating a possible spin reorientation. There is no sign of magnetic order for the Ce-sublattice either, but, alternating current magnetic susceptibility measurements reveal a spin glass state below 18 K in the case of $H\bot c$. Isothermal magnetization curves measured below magnetic order with $H\bot c$ show saturation and even large hysteresis at 2 K, indicating the presence of a ferromagnetic component. In addition, a field-induced spin-flop transition is observed in the case of $H\bot c$, indicating a field-induced spin reorientation of Mn spins. Electrical resistivity measurements indicate a metallic nature for CeMn$_{0.85}$Sb$_{2}$ and large anisotropy which is consistent with its quasi-two-dimensional layered structure.
|
Received: 07 January 2023
Revised: 01 March 2023
Accepted manuscript online: 02 March 2023
|
PACS:
|
75.10.Nr
|
(Spin-glass and other random models)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
71.20.Lp
|
(Intermetallic compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U22A6005, U2032204, and 12104492), the Guangdong Major Scientific Research Project (Grant No. 2018KZDXM061), the National Key Research and Development Program of China (Grant No. 2021YFA1400401), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010000), the K. C. Wong Education Foundation (Grant No. GJTD-2018-01), and the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0102). |
Corresponding Authors:
Hai Feng, Huai-Xin Yang, You-Guo Shi
E-mail: hai.feng@iphy.ac.cn;hxyang@iphy.ac.cn;ygshi@iphy.ac.cn
|
Cite this article:
Yong Li(李勇), Shan-Shan Miao(苗杉杉), Hai Feng(冯海),Huai-Xin Yang(杨槐馨), and You-Guo Shi(石友国) Crystal growth of CeMn0.85Sb2: Absence of magnetic order of Ce-sublattice 2023 Chin. Phys. B 32 067501
|
[1] Zhang A M, Liu C L, Yi C J, Zhao G H, Xia T L, Shi Y G, Yu R, Wang X Q, Chen C F and Zhang Q M2016 Nat. Commun. 7 13833 [2] Qiu Z Y, Le C C, Dai Y M, Xu B, He J B, Yang R, Chen G F, Hu J P and Qiu X G2018 Phys. Rev. B 98 115151 [3] He B J, Fu Y, Zhao L X, Liang H, Chen D, Leng Y M, Wang X M, Li J, Zhang S, Xue M Q, Li C H, Zhang P, Ren Z A and Chen G F2017 Phys. Rev. B 95 045128 [4] Wang K F, Graf D, Wang L M, Lei H C, Tozer S W and Petrovic C2012 Phys. Rev. B 85 041101 [5] Feng Y, Wang Z J, Chen C Y, Shi Y G, Xie Z J, Yi H M, Liang A J, He S L, He J F, Peng Y Y, Liu X, Liu Y, Zhao L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Dai X, Fang Z and Zhou X J2014 Sci. Rep. 4 5385 [6] You J S, Lee I, Choi E S, Joe Y J, Shim J H and Kim J S2019 Curr. Appl. Phys. 19 230 [7] Liu Y, Ma T, Zhou L, Straszheim W E, Islam F, Jensen B A, Tian W, Heitmann T, Rosenberg R A, Wilde J M, Li B, Kreyssig A, Goldman A I, Ueland B G, McQueeney R J and Vaknin D2019 Phys. Rev. B 99 054435 [8] Wang Y Y, Xu S, Sun L L and Xia T L2018 Phys. Rev. Mater. 2 021201 [9] Pan Y, Fan F R, Hong X C, He B, Le C C, Schnelle W, He Y K, Imasato K, Borrmann H, Hess C, Büchner B, Sun Y, Fu C G, Snyder G J and Felser C2021 Adv. Mater. 33 2003168 [10] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van der Brink J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schäfer R and Cava R J2019 Nat. Commun. 10 3424 [11] Pan Y, Le C C, He B, Watzman S J, Yao M Y, Gooth J, Heremans J P, Sun Y and Felser C2022 Nat. Mater. 21 203 [12] Masuda H, Sakai H, Tokunaga M, Yamasaki Y C, Miyake A, Shiogai J, Nakamura S, Awaji S, Tsukazaki A, Nakao H, Murakami Y, Arima T, Tokura Y and Ishwata S2016 Sci. Adv. 2 e1501117 [13] Sun Z L, Wang H H, Wang A F, Lei B, Zhuo W Z, Yu F H, Zhou X Y, Ying J J, Xiang Z J, Wu T and Chen X H2022 Adv. Funct. Mater. 32 2202188 [14] Zhang L Y, Sun Z L, Wang A F, Xia Y Y, Mi X R, Zhang L, He M Q, Chai Y S, Wu T, Wang R, Zhou X Y and Chen X H2021 Phys. Rev. B 104 205108 [15] Park J, Lee G, Wolff-Fabris F, Koh Y Y, Eom M J, Kim Y K, Farhan M A, Jo Y J, Kim C, Shim J H and Kim J S2011 Phys. Rev. Lett. 107 126402 [16] Liu J Y, Hu J, Cao H B, Zhu Y L, Chuang A, Graf D, Adams J A, Radmanesh S M A, Spinu L, Choirescu I and Mao Z Q2016 Sci. Rep. 6 30525 [17] Klemenz S, Lei S M and Schoop L M2019 Annu. Rev. Mater. Sci. 49 185 [18] Guo Y F, Princep A J, Zhang X, Manuel P, Khalyavin D, Mazin I I, Shi Y G and Boothroyd A T2014 Phys. Rev. B 90 075120 [19] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q and Steglich F2011 Nat. Phys. 7 119 [20] Weng Z F, Smidman M, Jiao L, Lu X and Yuan H Q2016 Rep. Prog. Phys. 79 094503 [21] Shen B, Zhang Y J, Komijani Y, Nicklas M, Borth R, Wang A, Chen Y, Nie Z Y, Li R, Lu X, Lee H, Smidman M, Steglich F, Coleman P and Yuan H Q2020 Nature 579 51 [22] Balicas L, Nakatsuji S, Lee H, Schlottmann P, Murphy T P and Fisk Z2005 Phys. Rev. B 72 064422 [23] Thomas S M, Rosa P F S, Lee S B, Parameswaran S A, Fisk Z and Xia J2016 Phys. Rev. B 93 075149 [24] Rosa P F S, Bourg R J, Jesus B R, Pagliuso P G and Fisk Z2015 Phys. Rev. B 92 134421 [25] Wang Y Y, Yu Q H and Xia T L2016 Chin. Phys. B 25 107503 [26] He J B, Fu Y, Zhao L X, Liang H, Chen D, Leng Y M, Wang X M, Li J, Zhang S, Xue M Q, Li C H, Zhang P, Ren Z A and Chen G F2017 Phys. Rev. B 95 045128 [27] Huang S L, Kim J S, Shelton W A and Jin R Y2017 Proc. Natl. Acad. Sci. 114 6256 [28] Takahashi Y, Urata T and Ikuta H2021 Phys. Rev. B 104 054408 [29] Soh J R, Manuel P, Schröter N M B, Yi C J, Orlandi F, Shi Y G, Prabhakaran D and Boothroyd A T2019 Phys. Rev. B 100 174406 [30] Li Y, Yang M, Yan D Y, Miao S S, Yang H X, Feng H L and Shi Y G2022 Phys. Rev. B 105 224429 [31] Guo Y F, Princep A J, Zhang X, et al.2014 Phys. Rev. B 90 075120 [32] Zhang A, Liu C, Yi C, et al.2016 Nat. Commun. 7 13833 [33] Sapkota A, Classen L, Stone MB, et al.2020 Phys. Rev. B 101 041111 [34] Masuda H, Sakai H, Tokunaga M, et al.2016 Sci. Adv. 2 e1501117 [35] Sologub O, Hiebl K, Rogl P and Bodak O1995 J. Alloys Compd. 227 40 [36] Sheldrick G M and Schneider T R1997 Meth. Enzymol. 277 319 [37] Sheldrick G M2008 Acta Crystal. Sec. A 64 112 [38] Toby B H and Von Dreele R B2013 J. Appl. Cryst. 46 544 [39] Wang A, Zaliznyak I, Ren W, Wu L, Graf D, Garlea V O, Warren J B, Bozin E, Zhu Y and Petrovic C2016 Phys. Rev. B 94 165161 [40] Seesupplemental materials for details on crystallographic information files (Cif) for CeMn0.85Sb2 [41] Park T, Sidorov V A, Lee H, Fisk Z and Thompson J D2005 Phys. Rev. B 72 060410 [42] Adriano C, Rosa P F S, Jesus C B R, Grant T, Fisk Z, Garcia D J and Pagliuso P G2015 J. Appl. Phys. 117 17C103 [43] Rosa P F S, Jesus C B R, Adriano C, Fisk Z and Pagliuso P G2015 J. Phys.: Conf. Ser. 592 012063 [44] Seo S, Sidorov V A, Lee H, Jiang D, Fisk Z, Thompson J D and Park T2012 Phys. Rev. B 85 205145 [45] Baranets S and Bobev S2021 J. Solid State Chem. 303 122467 [46] Markandeyulu G and Rao R K V S1987 J. Magn. Magn. Mater. 67 215 [47] Soh J R, Jacobsen H, Ouladdiaf B, Ivanov A, Piovano A, Tejsner T, Feng Z, Wang H, Guo Y, Shi Y and Boothroyd2019 Phys. Rev. B 100 144431 [48] Soh J R, Tobin S M, Su H, Zivkovic I, Ouladdiaf B, Stunault A, Rodríguez-Velamazán A, Beauvois K, Guo Y and Boothroyd A T2021 Phys. Rev. B 104 L161103 [49] Gong D, Huang S, Ye F, Gui X, Zhang J, Xie W and Jin R Y2020 Phys. Rev. B 101 224422 [50] Hirosawa S, Nishino M and Miyashita S2017 Adv. Nat. Sci: Nanosci. Nanotechnol. 8 013002 [51] Monod P, Prejean J J and Tissier B2008 J. Appl. Phys. 50 7324 [52] Mydosh J A 1993 Spin Glasses: An Experimental Introduction (1st edn.) (Boca Raton: CRC Press) [53] Harikishnan S, Naveen Kumar C M, Bhat H L, et al.2008 J. Phys.: Condens. Matter 20 275234 [54] Thamizhavel A, Takeuchi T, Okubo T, Yamada M, Asai R, Kirita S, Galatanu A, Yamamoto E, Ebihara T, Inada Y, Settai R and Ōnuki Y2003 Phys. Rev. B 68 054427 [55] Muro Y, Takeda N and Ishkawa M1997 J. Alloys Compd. 257 23 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|