Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067501    DOI: 10.1088/1674-1056/acc060
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Crystal growth of CeMn0.85Sb2: Absence of magnetic order of Ce-sublattice

Yong Li(李勇)1,2,3, Shan-Shan Miao(苗杉杉)1, Hai Feng(冯海)1,4,†, Huai-Xin Yang(杨槐馨)1,3,‡, and You-Guo Shi(石友国)1,2,4,§
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Single crystals of CeMn$_{0.85}$Sb$_{2}$ have been successfully synthesized by using the Bi as flux. Analysis of single crystal x-ray diffraction data confirms that CeMn$_{0.85}$Sb$_{2}$ crystallizes in the HfCuSi$_{2}$-type structure with the space group $P4/nmm$ (No. 129). In the case of $H\parallel c$, CeMn$_{0.85}$Sb$_{2}$ displays a robust antiferromagnetic transition at $\sim 160 $ K for Mn-sublattice, and there is no sign of magnetic order regarding Ce-sublattice. In the case of $H\bot c$, the Mn-sublattice shows signs of magnetic order at 160 K and 116 K, indicating a possible spin reorientation. There is no sign of magnetic order for the Ce-sublattice either, but, alternating current magnetic susceptibility measurements reveal a spin glass state below 18 K in the case of $H\bot c$. Isothermal magnetization curves measured below magnetic order with $H\bot c$ show saturation and even large hysteresis at 2 K, indicating the presence of a ferromagnetic component. In addition, a field-induced spin-flop transition is observed in the case of $H\bot c$, indicating a field-induced spin reorientation of Mn spins. Electrical resistivity measurements indicate a metallic nature for CeMn$_{0.85}$Sb$_{2}$ and large anisotropy which is consistent with its quasi-two-dimensional layered structure.
Keywords:  CeMn0.85Sb2      magnetism      spin glass      layered structure      square lattice  
Received:  07 January 2023      Revised:  01 March 2023      Accepted manuscript online:  02 March 2023
PACS:  75.10.Nr (Spin-glass and other random models)  
  75.30.Gw (Magnetic anisotropy)  
  71.20.Lp (Intermetallic compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U22A6005, U2032204, and 12104492), the Guangdong Major Scientific Research Project (Grant No. 2018KZDXM061), the National Key Research and Development Program of China (Grant No. 2021YFA1400401), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010000), the K. C. Wong Education Foundation (Grant No. GJTD-2018-01), and the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0102).
Corresponding Authors:  Hai Feng, Huai-Xin Yang, You-Guo Shi     E-mail:  hai.feng@iphy.ac.cn;hxyang@iphy.ac.cn;ygshi@iphy.ac.cn

Cite this article: 

Yong Li(李勇), Shan-Shan Miao(苗杉杉), Hai Feng(冯海),Huai-Xin Yang(杨槐馨), and You-Guo Shi(石友国) Crystal growth of CeMn0.85Sb2: Absence of magnetic order of Ce-sublattice 2023 Chin. Phys. B 32 067501

[1] Zhang A M, Liu C L, Yi C J, Zhao G H, Xia T L, Shi Y G, Yu R, Wang X Q, Chen C F and Zhang Q M2016 Nat. Commun. 7 13833
[2] Qiu Z Y, Le C C, Dai Y M, Xu B, He J B, Yang R, Chen G F, Hu J P and Qiu X G2018 Phys. Rev. B 98 115151
[3] He B J, Fu Y, Zhao L X, Liang H, Chen D, Leng Y M, Wang X M, Li J, Zhang S, Xue M Q, Li C H, Zhang P, Ren Z A and Chen G F2017 Phys. Rev. B 95 045128
[4] Wang K F, Graf D, Wang L M, Lei H C, Tozer S W and Petrovic C2012 Phys. Rev. B 85 041101
[5] Feng Y, Wang Z J, Chen C Y, Shi Y G, Xie Z J, Yi H M, Liang A J, He S L, He J F, Peng Y Y, Liu X, Liu Y, Zhao L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Dai X, Fang Z and Zhou X J2014 Sci. Rep. 4 5385
[6] You J S, Lee I, Choi E S, Joe Y J, Shim J H and Kim J S2019 Curr. Appl. Phys. 19 230
[7] Liu Y, Ma T, Zhou L, Straszheim W E, Islam F, Jensen B A, Tian W, Heitmann T, Rosenberg R A, Wilde J M, Li B, Kreyssig A, Goldman A I, Ueland B G, McQueeney R J and Vaknin D2019 Phys. Rev. B 99 054435
[8] Wang Y Y, Xu S, Sun L L and Xia T L2018 Phys. Rev. Mater. 2 021201
[9] Pan Y, Fan F R, Hong X C, He B, Le C C, Schnelle W, He Y K, Imasato K, Borrmann H, Hess C, Büchner B, Sun Y, Fu C G, Snyder G J and Felser C2021 Adv. Mater. 33 2003168
[10] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van der Brink J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schäfer R and Cava R J2019 Nat. Commun. 10 3424
[11] Pan Y, Le C C, He B, Watzman S J, Yao M Y, Gooth J, Heremans J P, Sun Y and Felser C2022 Nat. Mater. 21 203
[12] Masuda H, Sakai H, Tokunaga M, Yamasaki Y C, Miyake A, Shiogai J, Nakamura S, Awaji S, Tsukazaki A, Nakao H, Murakami Y, Arima T, Tokura Y and Ishwata S2016 Sci. Adv. 2 e1501117
[13] Sun Z L, Wang H H, Wang A F, Lei B, Zhuo W Z, Yu F H, Zhou X Y, Ying J J, Xiang Z J, Wu T and Chen X H2022 Adv. Funct. Mater. 32 2202188
[14] Zhang L Y, Sun Z L, Wang A F, Xia Y Y, Mi X R, Zhang L, He M Q, Chai Y S, Wu T, Wang R, Zhou X Y and Chen X H2021 Phys. Rev. B 104 205108
[15] Park J, Lee G, Wolff-Fabris F, Koh Y Y, Eom M J, Kim Y K, Farhan M A, Jo Y J, Kim C, Shim J H and Kim J S2011 Phys. Rev. Lett. 107 126402
[16] Liu J Y, Hu J, Cao H B, Zhu Y L, Chuang A, Graf D, Adams J A, Radmanesh S M A, Spinu L, Choirescu I and Mao Z Q2016 Sci. Rep. 6 30525
[17] Klemenz S, Lei S M and Schoop L M2019 Annu. Rev. Mater. Sci. 49 185
[18] Guo Y F, Princep A J, Zhang X, Manuel P, Khalyavin D, Mazin I I, Shi Y G and Boothroyd A T2014 Phys. Rev. B 90 075120
[19] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q and Steglich F2011 Nat. Phys. 7 119
[20] Weng Z F, Smidman M, Jiao L, Lu X and Yuan H Q2016 Rep. Prog. Phys. 79 094503
[21] Shen B, Zhang Y J, Komijani Y, Nicklas M, Borth R, Wang A, Chen Y, Nie Z Y, Li R, Lu X, Lee H, Smidman M, Steglich F, Coleman P and Yuan H Q2020 Nature 579 51
[22] Balicas L, Nakatsuji S, Lee H, Schlottmann P, Murphy T P and Fisk Z2005 Phys. Rev. B 72 064422
[23] Thomas S M, Rosa P F S, Lee S B, Parameswaran S A, Fisk Z and Xia J2016 Phys. Rev. B 93 075149
[24] Rosa P F S, Bourg R J, Jesus B R, Pagliuso P G and Fisk Z2015 Phys. Rev. B 92 134421
[25] Wang Y Y, Yu Q H and Xia T L2016 Chin. Phys. B 25 107503
[26] He J B, Fu Y, Zhao L X, Liang H, Chen D, Leng Y M, Wang X M, Li J, Zhang S, Xue M Q, Li C H, Zhang P, Ren Z A and Chen G F2017 Phys. Rev. B 95 045128
[27] Huang S L, Kim J S, Shelton W A and Jin R Y2017 Proc. Natl. Acad. Sci. 114 6256
[28] Takahashi Y, Urata T and Ikuta H2021 Phys. Rev. B 104 054408
[29] Soh J R, Manuel P, Schröter N M B, Yi C J, Orlandi F, Shi Y G, Prabhakaran D and Boothroyd A T2019 Phys. Rev. B 100 174406
[30] Li Y, Yang M, Yan D Y, Miao S S, Yang H X, Feng H L and Shi Y G2022 Phys. Rev. B 105 224429
[31] Guo Y F, Princep A J, Zhang X, et al.2014 Phys. Rev. B 90 075120
[32] Zhang A, Liu C, Yi C, et al.2016 Nat. Commun. 7 13833
[33] Sapkota A, Classen L, Stone MB, et al.2020 Phys. Rev. B 101 041111
[34] Masuda H, Sakai H, Tokunaga M, et al.2016 Sci. Adv. 2 e1501117
[35] Sologub O, Hiebl K, Rogl P and Bodak O1995 J. Alloys Compd. 227 40
[36] Sheldrick G M and Schneider T R1997 Meth. Enzymol. 277 319
[37] Sheldrick G M2008 Acta Crystal. Sec. A 64 112
[38] Toby B H and Von Dreele R B2013 J. Appl. Cryst. 46 544
[39] Wang A, Zaliznyak I, Ren W, Wu L, Graf D, Garlea V O, Warren J B, Bozin E, Zhu Y and Petrovic C2016 Phys. Rev. B 94 165161
[40] Seesupplemental materials for details on crystallographic information files (Cif) for CeMn0.85Sb2
[41] Park T, Sidorov V A, Lee H, Fisk Z and Thompson J D2005 Phys. Rev. B 72 060410
[42] Adriano C, Rosa P F S, Jesus C B R, Grant T, Fisk Z, Garcia D J and Pagliuso P G2015 J. Appl. Phys. 117 17C103
[43] Rosa P F S, Jesus C B R, Adriano C, Fisk Z and Pagliuso P G2015 J. Phys.: Conf. Ser. 592 012063
[44] Seo S, Sidorov V A, Lee H, Jiang D, Fisk Z, Thompson J D and Park T2012 Phys. Rev. B 85 205145
[45] Baranets S and Bobev S2021 J. Solid State Chem. 303 122467
[46] Markandeyulu G and Rao R K V S1987 J. Magn. Magn. Mater. 67 215
[47] Soh J R, Jacobsen H, Ouladdiaf B, Ivanov A, Piovano A, Tejsner T, Feng Z, Wang H, Guo Y, Shi Y and Boothroyd2019 Phys. Rev. B 100 144431
[48] Soh J R, Tobin S M, Su H, Zivkovic I, Ouladdiaf B, Stunault A, Rodríguez-Velamazán A, Beauvois K, Guo Y and Boothroyd A T2021 Phys. Rev. B 104 L161103
[49] Gong D, Huang S, Ye F, Gui X, Zhang J, Xie W and Jin R Y2020 Phys. Rev. B 101 224422
[50] Hirosawa S, Nishino M and Miyashita S2017 Adv. Nat. Sci: Nanosci. Nanotechnol. 8 013002
[51] Monod P, Prejean J J and Tissier B2008 J. Appl. Phys. 50 7324
[52] Mydosh J A 1993 Spin Glasses: An Experimental Introduction (1st edn.) (Boca Raton: CRC Press)
[53] Harikishnan S, Naveen Kumar C M, Bhat H L, et al.2008 J. Phys.: Condens. Matter 20 275234
[54] Thamizhavel A, Takeuchi T, Okubo T, Yamada M, Asai R, Kirita S, Galatanu A, Yamamoto E, Ebihara T, Inada Y, Settai R and Ōnuki Y2003 Phys. Rev. B 68 054427
[55] Muro Y, Takeda N and Ishkawa M1997 J. Alloys Compd. 257 23
[1] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[6] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[7] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[8] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[9] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[10] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[11] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[12] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[13] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[14] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[15] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
No Suggested Reading articles found!