Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 117101    DOI: 10.1088/1674-1056/ad0112
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

Structural, electronic and magnetic properties of Fe-doped strontium ruthenates

Nan Liu(刘楠)1, Xiao-Chao Wang(王晓超)1, and Liang Si(司良)1,2,†
1 School of Physics, Northwest University, Xi'an 710127, China;
2 Institute of Solid State Physics, TU Wien, Vienna 1040, Austria
Abstract  By employing a combined approach of density-functional theory (DFT) and dynamical mean-field theory (DMFT) calculations, we examine the structural, electronic, and magnetic characteristics of two distinct strontium ruthenates: Sr2RuO4, an unconventional superconductor, and the correlated metal SrRuO3, both at 50% Fe-doping level. In both Sr2Fe0.5Ru0.5O4 and SrFe0.5Ru0.5O3, the original ruthenium (Ru) and the dopant iron (Fe) atoms adopt 3-dimensional and 2-dimensional G-type structures, respectively. The hybridization between Fe-3d and Ru-4d is comparatively weaker than in other double perovskite systems. The interplay between strong correlations and reduced itinerancy results in significant spin splitting at Fe and Ru sites. Consequently, a charge transfer process, along with the super-exchange effect, leads to antiferromagnetically coupled Fe3+ and Ru5+ ions and establishes a semiconducting ferrimagnetic order. Subsequent DMFT calculations demonstrate the persistence of the ferrimagnetic order even at room temperature (300 K). These findings align with prior reports on SrFe0.5Ru0.5O3, thus reinforcing the notion that 3d-4d transition metal oxides hold considerable promise as candidates for high-performance spintronic devices, such as spin-valve sensors and spintronic giant magnetoresistance devices.
Keywords:  first-principles calculations      double perovskites      correlation effects      dynamical mean-field theory  
Received:  19 September 2023      Revised:  07 October 2023      Accepted manuscript online:  07 October 2023
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  75.50.Gg (Ferrimagnetics)  
Fund: Project supported by the starting funds from Northwest University. We thank Paul Worm and Karsten Held for fruitful discussion and support of computational resources. Calculations have been mainly done on the Vienna Scientific Clusters (VSC) and supercomputer at the School of Physics of Northwest University.
Corresponding Authors:  Liang Si     E-mail:  siliang@nwu.edu.cn

Cite this article: 

Nan Liu(刘楠), Xiao-Chao Wang(王晓超), and Liang Si(司良) Structural, electronic and magnetic properties of Fe-doped strontium ruthenates 2023 Chin. Phys. B 32 117101

[1] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photonics 8 506
[2] Hwang J, Rao R R, Giordano L, Katayama Y, Yu Y and Shao-Horn Y 2017 Science 358 751
[3] Anderson P W, Baskaran G, Zou Z and Hsu T 1987 Phys. Rev. Lett. 58 2790
[4] Mulder A T, Benedek N A, Rondinelli J M and Fennie C J 2013 Adv. Funct. Mater. 23 4810
[5] Birol T, Benedek N A and Fennie C J 2011 Phys. Rev. Lett. 107 257602
[6] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H and Arima T H 2009 Science 323 1329
[7] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[8] Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C B, Blank D H A and Beasley M R 2012 Rev. Mod. Phys. 84 253
[9] Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657
[10] Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y and Terakura K 2003 Science 302 92
[11] Meng K Y, Ahmed A S, Bacani M, et al. 2019 Nano Lett. 19 3169
[12] Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W, Nagaosa N, Tokura Y and Kawasaki M 2016 Sci. Adv. 2 e1600304
[13] Wang L, Feng Q, Kim Y, et al. 2018 Nat. Mater. 17 1087
[14] Lu J, Si L, Zhang Q, et al. 2021 Adv. Mater. 33 2102525
[15] Nelson K, Mao Z, Maeno Y and Liu Y 2004 Science 306 1151
[16] Kallin C 2012 Rep. Prog. Phys. 75 042501
[17] Ishida K, Mukuda H, Kitaoka Y, et al. 1998 Nature 396 658
[18] Luke G, Fudamoto Y, Kojima K, et al. 1998 Nature 394 558
[19] Rice T and Sigrist M 1995 J. Phys.:Condens. Mat. 7 L643
[20] Cao M, Liu T, Gao S, Sun G, Wu X, Hu C and Wang Z L 2005 Angew. Chem. 117 4269
[21] Stolen S, Gronvold F, Brinks H, Atake T and Mori H 1998 J. Chem. Thermodyn. 30 365
[22] Matsumoto G 1970 J. Phys. Soc. Jpn. 29 606
[23] Swarnkar A, Mir W J and Nag A 2018 ACS Energy Lett. 3 286
[24] Long Y, Hayashi N, Saito T, Azuma M, Muranaka S and Shimakawa Y 2009 Nature 458 60
[25] Kunkemöller S, Nugroho A A, Sidis Y and Braden M 2014 Phys. Rev. B 89 045119
[26] Braden M, Friedt O, Sidis Y, Bourges P, Minakata M and Maeno Y 2002 Phys. Rev. Lett. 88 197002
[27] Ortmann J, Liu J, Hu J, Zhu M, Peng J, Matsuda M, Ke X and Mao Z 2013 Sci. Rep. 3
[28] Zhu M, Shanavas K V, Wang Y, Zou T, Sun W F, Tian W, Garlea V O, Podlesnyak A, Matsuda M, Stone M B, Keavney D, Mao Z Q, Singh D J and Ke X 2017 Phys. Rev. B 95 054413
[29] Hicks C W, Brodsky D O, Yelland E A, et al. 2014 Science 344 283
[30] NishiZaki S, Maeno Y and Mao Z 2000 J. Phys. Soc. Jpn. 69 572
[31] Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett. 92 047002
[32] Fan J, Liao S, Wang W, et al. 2011 J. Appl. Phys. 110 043907
[33] Bansal C, Kawanaka H, Takahashi R and Nishihara Y 2003 J. Alloys Compd. 360 47
[34] Kikugawa N, Mackenzie A P, Bergemann C, Borzi R A, Grigera S A and Maeno Y 2004 Phys. Rev. B 70 060508
[35] Kikugawa N, Bergemann C, Mackenzie A P and Maeno Y 2004 Phys. Rev. B 70 134520
[36] Qasim I, Blanchard P E, Liu S, Tang C, Kennedy B J, Avdeev M and Kimpton J A 2013 J. Solid State Chem. 206 242
[37] Shen K M, Kikugawa N, Bergemann C, Balicas L, Baumberger F, Meevasana W, Ingle N J C, Maeno Y, Shen Z X and Mackenzie A P 2007 Phys. Rev. Lett. 99 187001
[38] Zhong Z and Hansmann P 2017 Phys. Rev. X 7 011023
[39] Chen H and Millis A 2017 J. Phys.:Condens. Matter 29 243001
[40] Chang J, Lee K, Jung M H, Kwon J H, Kim M and Kim S K 2011 Chem. Mater. 23 2693
[41] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[42] Kresse G and Furthmü$ller J 1996 Comput. Mater. Sci. 6 15
[43] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 An augmented plane wave+ local orbitals program for calculating crystal properties
[44] Schwarz K, Blaha P and Madsen G K H 2002 Comput. Phys. Commun. 147 71
[45] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[46] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[47] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[48] Miyake T and Aryasetiawan F 2008 Phys. Rev. B 77 085122
[49] Si L, Zhong Z, Tomczak J M and Held K 2015 Phys. Rev. B 92 041108
[50] Li Z, Iitaka T and Tohyama T 2012 Phys. Rev. B 86 094422
[51] Li Z, Laskowski R, Iitaka T and Tohyama T 2012 Phys. Rev. B 85 134419
[52] Wannier G H 1937 Phys. Rev. 52 191
[53] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[54] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[55] Kune J, Arita R, Wissgott P, Toschi A, Ikeda H and Held K 2010 Comput. Phys. Commun. 181 1888
[56] Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 34910
[57] Parragh N, Toschi A, Held K and Sangiovanni G 2012 Phys. Rev. B 86 155158
[58] Wallerberger M, Hausoel A, Gunacker P, Kowalski A, Parragh N, Goth F, Held K and Sangiovanni G 2019 Comput. Phys. Commun. 235 388
[59] Kaufmann J and Held K 2023 Comput. Phys. Commun. 282 108519
[60] Gubernatis J E, Jarrell M, Silver R N and Sivia D S 1991 Phys. Rev. B 44 6011
[61] Sandvik A W 1998 Phys. Rev. B 57 10287
[62] Halder A, Sanyal P and Saha-Dasgupta T 2019 Phys. Rev. B 99 020402
[63] Nowik I and Felner I 2004 Hyperfine Interact. 156 195
[64] Battle P, Gibb T, Jones C and Studer F 1989 J. Solid State Chem. 78 281
[65] Stokes H T and Hatch D M 2005 J. Appl. Crystallogr. 38 237
[66] Zhu M, Wang Y, Li P G, Ge J J, Tian W, Keavney D, Mao Z Q and Ke X 2017 Phys. Rev. B 95 174430
[67] Sarma D D, Mahadevan P, Saha-Dasgupta T, Ray S and Kumar A 2000 Phys. Rev. Lett. 85 2549
[68] Sanyal P, Halder A, Si L, Wallerberger M, Held K and Saha-Dasgupta T 2016 Phys. Rev. B 94 035132
[69] Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H and Yin J H 2007 Phys. Rev. Lett. 99 127201
[70] Wang X, Song Y, Tao L L, Feng J F, Sui Y, Tang J, Song B, Wang Y, Wang Y, Zhang Y and Han X F 2014 Appl. Phys. Lett. 105 262402
[71] Hua E, Si L, Dai K, Wang Q, Ye H, Liu K, Zhang J, Lu J, Chen K, Jin F, Wang L and Wu W 2014 Adv. Mater. 34 2270327
[1] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[2] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[3] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[4] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[5] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[6] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[7] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[8] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[9] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[10] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[11] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[12] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[13] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[14] Two-dimensional transition metal halide PdX2(X= F, Cl, Br, I): A promising candidate of bipolar magnetic semiconductors
Miao-Miao Chen(陈苗苗), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(12): 127103.
[15] Strong anharmonicity-assisted low lattice thermal conductivities and high thermoelectric performance in double-anion Mo2AB2 (A = S, Se, Te; B=Cl, Br, I) semiconductors
Haijun Liao(廖海俊), Le Huang(黄乐), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Zhipeng Sun(孙志鹏), and Jingbo Li(李京波). Chin. Phys. B, 2023, 32(10): 107304.
No Suggested Reading articles found!