Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 086801    DOI: 10.1088/1674-1056/acd2b4
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)

Xiaofan Yu(于小凡)1,2, Yangwu Tong(童洋武)1,2, and Yong Yang(杨勇)1,2,†
1. Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
Abstract  The adsorption and diffusion of hydrogen atoms on Cu(001) are studied using first-principles calculations. By taking into account the contribution of zero-point energy (ZPE), the originally identical barriers are shown to be different for H and D, which are respectively calculated to be ~ 158 meV and ~ 139 meV in height. Using the transfer matrix method (TMM), we are able to calculate the accurate probability of transmission across the barriers. The crucial role of quantum tunneling is clearly demonstrated at low-temperature region. By introducing a temperature-dependent attempting frequency prefactor, the rate constants and diffusion coefficients are calculated. The results are in agreement with the experimental measurements at temperatures from ~ 50 K to 80 K.
Keywords:  H/Cu(001)      first-principles calculations      quantum tunneling      diffusion coefficients  
Received:  08 March 2023      Revised:  21 April 2023      Accepted manuscript online:  05 May 2023
PACS:  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  66.35.+a (Quantum tunneling of defects)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.11474285 and 12074382).
Corresponding Authors:  Yong Yang     E-mail:  yyanglab@issp.ac.cn

Cite this article: 

Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇) Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001) 2023 Chin. Phys. B 32 086801

[1] Barth J V 2000 Surf. Sci. Rep. 40 75
[2] Ala-Nissila T, Ferrando R and Ying S C 2002 Adv. Phys. 51 949
[3] Honkala K, Hellman A, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H and Norskov J K 2005 Science 307 555
[4] Olah G A, Goeppert A and Prakash G K S 2009 J. Org. Chem. 74 487
[5] Gudmundsdóttir S, Skúlason E and Jónsson H 2012 Phys. Rev. Lett. 108 156101
[6] Tao T, Zhi T, Li M X, Xie Z L, Zhang R, Liu B, Li Y, Zhuang Z, Zhang G G, Jiang F L, Chen P and Zheng Y D 2014 Chin. Phys. B 23 096203
[7] Zheng C Z, Yeung C K, Loy M M T and Xiao X D 2006 Phys. Rev. Lett. 97 166101
[8] Cao G X, Nabighian E and Zhu X D 1997 Phys. Rev. Lett. 79 3696
[9] Graham A P, Menzel A and Toennies J P 1999 J. Chem. Phys. 111 1676
[10] Lauhon L J and Ho W 2000 Phys. Rev. Lett. 85 4566
[11] Lauhon L J and Ho W Erratum: 2002 Phys. Rev. Lett. 89 079901
[12] Chorkendorff I and Rasmussen P B 1991 Surf. Sci. 248 35
[13] Lai W Z, Xie D Q, Yang J L and Zhang D H 2004 J. Chem. Phys. 121 7434
[14] Sundel P G and Wahnström G 2005 Surf. Sci. 593 102
[15] Sundel P G and Wahnström G 2004 Phys. Rev. B 70 081403
[16] Zhang F J, Zhou B H, Liu X, Song Y and Zuo X 2020 Chin. Phys. B 29 027101
[17] Chen R C, Yang L, Dai Y Y, Zhu Z Q, Peng S M, Long X G, Gao F and Zu X T 2012 Chin. Phys. B 21 056601
[18] Sundel P G and Wahnström G 2004 Phys. Rev. Lett. 92 159901
[19] Valone S M, Voter A F and Doll J D 1986 J. Chem. Phys. 85 7480
[20] Lee G and Plummer E W 2002 Surf. Sci. 498 229
[21] Marx D and Parrinello M 1994 Z. Phys. B 95 143
[22] Mills G, Schenter G K, Makarov D and Jónsson H 1997 Chem. Phys. Lett. 278 91
[23] Einarsdóttir D M, Arnaldsson A, Óskarsson F and Jónsson H 2012 Lect. Notes Comput. Sci. 7134 45
[24] Lauderdale J G and Truhlar D G 1986 J. Chem. Phys. 84 1843
[25] Kua J, Lauhon L J, Ho W and Goddard III W A 2001 J. Chem. Phys. 115 5620
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Grimme S 2006 J. Comput. Chem. 27 1787
[30] Blöchl P E 1994 Phys. Rev. B 50 17953
[31] Kresse G and Jouber D 1999 Phys. Rev. B 59 1758
[32] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[33] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[34] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[35] Baroni S and Resta R 1986 Phys. Rev. B 33 7017
[36] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[37] Bi C and Yang Y 2021 J. Phys. Chem. C 125 464
[38] Bi C, Chen Q, Li W and Yang Y 2021 Chin. Phys. B 30 046601
[39] Schiff L I 1968 Quantum Mechanics (McGraw-Hill) p. 268
[1] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[2] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[3] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[4] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[5] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[6] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[9] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[10] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[11] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[12] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!