Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 116801    DOI: 10.1088/1674-1056/ad0143
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

Photo-responsive droplet manipulation slippery lubricant-infused porous surface with ultra-high durability

Ze-Zhi Liu(刘泽志)1,2,3, Chen Zhang(张琛)1,2,3,4,†, Tong Wen(文通)1,2,3, Hui-Zhu Li(李荟竹)1,2,3, Wen-Ping Gao(高文萍)1,2,3, Xin-Kong Wang(王新孔)1,2,3, Wei Zhao(赵伟)1,2,3, Kai-Ge Wang(王凯歌)1,2,3,4, and Jin-Tao Bai(白晋涛)1,2,3,4,‡
1 State Key Laboratory of Photon-Technology in Western China Energy, Xi'an 710069, China;
2 International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Xi'an 710069, China;
3 Key Laboratory of Optoelectronics Technology in Shaanxi Province, Xi'an 710069, China;
4 Institute of Photonics & Photon Technology, Northwest University, Xi'an 710069, China
Abstract  Photo-responsive slippery lubricant-infused porous surface (SLIPS) for droplet manipulation is flexible, non-contact and non-destructive in droplet manipulation, which has promising applications in flexible robotics, microfluidics, biomedicine, and chemical analysis. However, the repeated manipulations for droplets of SLIPSs are quite limited in the works reported so far, the poor durability of droplet manipulation severely limits the practical application of the surfaces. In this paper, an Fe3O4-doped polydimethylsiloxane (PDMS)-based SLIPS is proposed and implemented to achieve ultra-high repeated droplet manipulation numbers under near-infrared ray (NIR) laser irradiation. Firstly, a micron columnar array structure with micro-pits on the top side, as well as, a wall structure out of the array is designed on SLIPS to reserve the lubricant. Secondly, the prototype of the SLIPS is fabricated by a 3-step ultraviolet (UV) lithography, and subsequently immersed in silicone oil for more than 96 h to obtain the ultra-high durability slippery lubricant-infused porous surface (UD-SLIPS). With a power of 25 mW-85 mW NIR laser, the repeated manipulation of microdroplets (≤ 5 μ L) in the scale of 1 cm can exceed more than 3000 times which is far beyond that in previous reports. Finally, the droplet manipulation performance of this photo-responsive UD-SLIPS and the influence of infusion time on durability are investigated. The mechanism of the PDMS swelling effect is found to be the key factor in improving the droplet manipulation durability of SLIPS. The findings of this work would be of great significance for the development of highly durable photo-responsive functional surfaces for droplet manipulation.
Keywords:  photo-responsive      droplet manipulation      slippery lubricant-infused porous surface (SLIPS)      ultraviolet (UV) lithography  
Received:  01 July 2023      Revised:  04 October 2023      Accepted manuscript online:  09 October 2023
PACS:  68.03.Cd (Surface tension and related phenomena)  
  81.16.Nd (Micro- and nanolithography)  
  68.08.-p (Liquid-solid interfaces)  
  42.62.-b (Laser applications)  
Fund: Project supported by the National Major Scientific Research Instrument Development Project of China (Grant No. 51927804), the National Natural Science Foundation of China (Grant No. 62275216), and the Science and Technology Innovation Team Project of Shaanxi Province (Grant Nos. S2018-ZC-TD-0061 and 2023-CX-TD-06).
Corresponding Authors:  Chen Zhang     E-mail:  nwuzchen@nwu.edu.cn

Cite this article: 

Ze-Zhi Liu(刘泽志), Chen Zhang(张琛), Tong Wen(文通), Hui-Zhu Li(李荟竹), Wen-Ping Gao(高文萍), Xin-Kong Wang(王新孔), Wei Zhao(赵伟), Kai-Ge Wang(王凯歌), and Jin-Tao Bai(白晋涛) Photo-responsive droplet manipulation slippery lubricant-infused porous surface with ultra-high durability 2023 Chin. Phys. B 32 116801

[1] Feng R, Xu C, Song F, Wang F, Wang X L and Wang Y Z 2020 ACS Appl. Mater. Interfaces 12 12373
[2] Wier K A and McCarthy T J 2006 Langmuir 22 2433
[3] Gou X and Guo Z 2020 Langmuir 36 8983
[4] Saini A, Arora I and Ratan J K 2020 Mater. Lett. 260 126888
[5] Li X, Yin S, Huang S, Luo H and Tang Q 2020 Vacuum 173 109172
[6] Maharjan S, Liao K S, Wang A J, Barton K, Haldar A, Alley N J, Byrne H J and Curran S A 2020 Mater. Chem. Phys. 239 122000
[7] Ruan M, Zhan Y, Wu Y, Wang X, Li W, Chen Y, Wei M, Wang X and Deng X 2017 RSC Adv. 7 41339
[8] Barthwal S, Lee B and Lim S H 2019 Appl. Surf. Sci. 496 143677
[9] Liu C, Li Y, Lu C, Liu Y, Feng S and Liu Y 2020 ACS Appl. Mater. Interfaces 12 25471
[10] Zhang M, Liu Q, Chen R, Chen H, Song D, Liu J, Zhang H, Li R, Wang Y and Wang J 2018 J. Alloys Compd. 764 730
[11] Song F, Wu C, Chen H, Liu Q, Liu J, Chen R, Li R and Wang J 2017 RSC Adv. 7 44239
[12] Qiu R, Zhang D and Wang P 2013 Corros. Sci. 66 350
[13] Elvira K S, Casadevall i Solvas X, Wootton R C and deMello A J 2013 Nat. Chem. 5 905
[14] Venancio-Marques A and Baigl D 2014 Langmuir 30 4207
[15] Jiao Z Z, Zhou H, Han X C, Han D D and Zhang Y L 2023 J. Colloid Interface Sci. 629 582
[16] Basu S, Hanh B M, Isaiah Chua J Q, Daniel D, Ismail M H, Marchioro M, Amini S, Rice S A and Miserez A 2020 J. Colloid Interface Sci. 568 185
[17] Rowthu S and Hoffmann P 2018 ACS Appl. Mater. Interfaces 10 10560
[18] Wang J, Kato K, Blois A P and Wong T S 2016 ACS Appl. Mater. Interfaces 8 8265
[19] Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A and Aizenberg J 2011 Nature 477 443
[20] Hao C, Liu Y, Chen X, He Y, Li Q, Li K Y and Wang Z 2014 Sci. Rep. 4 6846
[21] Fang Y, Liang J, Bai X, Yong J, Huo J, Yang Q, Hou X and Chen F 2020 Langmuir 36 15403
[22] Wen T, Zhang C, Gong Y, Liu Z, Zhao W, Zhan Y, Zhang C, Wang K and Bai J 2023 Polymers 15 1132
[23] Li Q, Wu D and Guo Z 2019 Soft Matter 15 6803
[24] Qian C, Chen Z, Meng X, Li Q and Chen X 2023 Chem. Eng. J. 469 143819
[25] Huang T, Zhang L, Lao J, Luo K, Liu X, Sui K, Gao J and Jiang L 2022 ACS Appl. Mater. Interfaces 14 17968
[26] Makkonen L 2016 J. Phys. Condens. Matter 28 135001
[27] Chaudhury M K and Whitesides G M 1992 Science 256 1539
[28] Ricci E, Sangiorgi R and Passerone A 1986 Surf. Coat. Technol. 28 215
[29] Wu S Z, Zhou L L, Chen C, Shi L A, Zhu S W, Zhang C C, Meng D, Huang Z C, Li J W, Hu Y L and Wu D 2019 Langmuir 35 13915
[30] Zhao H, Wang D R, Zha J W, Zhao J and Dang Z M 2013 J. Mater. Chem. A 1 3140
[31] Hwang H, Papadopoulos P, Fujii S and Wooh S 2022 Adv. Funct. Mater. 32 2111311
[1] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[2] A comparative study of the self-propelled jumping capabilities of coalesced droplets on RTV surfaces and superhydrophobic surfaces
Sheng-Wu Wang(王晟伍), Lu Peng(彭璐), Jun-Wu Chen(陈俊武), and Lee Li(李黎). Chin. Phys. B, 2021, 30(4): 046501.
[3] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[4] Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device
Liang-Yu Wu(吴梁玉), Ling-Bo Liu(刘凌波), Xiao-Tian Han(韩笑天), Qian-Wen Li(李倩文), Wei-Bo Yang(杨卫波). Chin. Phys. B, 2019, 28(10): 104702.
[5] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[6] Full filling of mesoporous carbon nanotubes by aqueous solution at room temperature
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(3): 036801.
[7] Approximate expression of Young's equation and molecular dynamics simulation for its applicability
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Wei-Wei Liu(刘伟伟), Ru-Zeng Zhu(朱如曾), Qian Ping(钱萍). Chin. Phys. B, 2019, 28(1): 016801.
[8] Helium nano-bubble bursting near the nickel surface
Heng-Feng Gong(龚恒风), Min Liu(刘敏), Fei Gao(高飞), Rui Li(李锐), Yan Yan(严岩), Heng Huang(黄恒), Tong Liu(刘彤), Qi-Sen Ren(任啟森). Chin. Phys. B, 2017, 26(11): 113401.
[9] Icephobic performance on the aluminum foil-based micro-/nanostructured surface
Yu Chen(陈宇), Guicheng Liu(刘桂成), Lei Jiang(姜磊), Ji Young Kim(金志永), Feng Ye(叶锋), Joong Kee Lee(李重基), Lei Wang(王磊), Bo Wang(王波). Chin. Phys. B, 2017, 26(4): 046801.
[10] Mechanism of contact angle saturation and an energy-based model for electrowetting
Rui Zhao(赵瑞), Zhong-Cheng Liang(梁忠诚). Chin. Phys. B, 2016, 25(6): 066801.
[11] Bending energy of a vesicle to which a small spherical particle adhere: An analytical study
Cao Si-Qin (曹思勤), Wei Guang-Hong (韦广红), Jeff Z. Y. Chen. Chin. Phys. B, 2015, 24(9): 098702.
[12] Contact angle hysteresis in electrowetting on dielectric
Zhao Rui (赵瑞), Liu Qi-Chao (刘启超), Wang Ping (王评), Liang Zhong-Cheng (梁忠诚). Chin. Phys. B, 2015, 24(8): 086801.
[13] Lattice Boltzmann simulation of liquid–vapor system by incorporating a surface tension term
Song Bao-Wei (宋保维), Ren Feng (任峰), Hu Hai-Bao (胡海豹), Huang Qiao-Gao (黄桥高). Chin. Phys. B, 2015, 24(1): 014703.
[14] Expressions of the radius and the surface tension of surface of tension in terms of the pressure distribution for nanoscale liquid threads
Yan Hong (闫红), Wei Jiu-An (魏久安), Cui Shu-Wen (崔树稳), Zhu Ru-Zeng (朱如曾). Chin. Phys. B, 2013, 22(12): 126801.
[15] Relation between Tolman length and isothermal compressibility for simple liquids
Wang Xiao-Song (王小松), Zhu Ru-Zeng (朱如曾). Chin. Phys. B, 2013, 22(3): 036801.
No Suggested Reading articles found!