Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114205    DOI: 10.1088/1674-1056/acd7d2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED

Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚)
School of Physics, Beihang University, Beijing 100191, China
Abstract  In recent years, most studies have focused on the perfect absorption and high-efficiency quantum memory of the one-sided system, ignoring the characteristics of its optical switching contrast. Thus, the performance of all-optical switching and optical transistors is limited. Herein, we propose a localized surface plasmon (LSP) mode-assisted cavity QED system which consists of a Λ-shaped three-level quantum emitter (QE), a metal nanoparticle and a one-sided optical cavity with a fully reflected mirror. In this system, the QE coherently couples to the cavity and LSP mode respectively, which is manipulated by the control field. As a result, considerably high and stable switch contrast of 90% can be achievable due to the strong confined field of the LSP mode and perfect absorption of the optical medium. In addition, we obtain a power dependent effect between the control field and the transmitted frequency as a result of the converted dark state. We employ the Heisenberg-Langevin equation and numerical master equation formalisms to explain high switching, controllable output light and the dark state. Our system introduces an effective method to improve the performance of optical switches based on the one-sided system in quantum information storage and quantum communication.
Keywords:  quantum optics      electromagnetically induced transparency      all-optical switching      localized surface plasmon  
Received:  07 March 2023      Revised:  16 May 2023      Accepted manuscript online:  23 May 2023
PACS:  42.50.-p (Quantum optics)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  37.30.+i (Atoms, molecules, andions incavities)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: The authors acknowledge support from the National Natural Science Foundation of China (Grant Nos. 62075004 and 11804018) and the Beijing Natural Science Foundation (Grant No. 4212051).
Corresponding Authors:  Xiaolan Zhong     E-mail:  Zhongxl@buaa.edu.cn

Cite this article: 

Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚) Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED 2023 Chin. Phys. B 32 114205

[1] Harris S E 1997 Phys. Today 50 36
[2] Zhu J Z and Huang G X 2022 Phys. Rev. A 105 33515
[3] Zhu J Z, Zhang Q and Huang G X 2021 Phys. Rev. A 103 63512
[4] Wei Y C, Wu B H, Hsiao Y F, Tsai P J and Chen Y C 2020 Phys. Rev. A 102 63720
[5] Zhang Q and Huang G 2021 Phys. Rev. A 104 33714
[6] Aspect A, Arimondo E, Kaiser R, Vansteenkiste N and Cohen-Tannoudji C 1988 Phys. Rev. Lett. 61 826
[7] Morigi G, Eschner J and Keitel C H 2000 Phys. Rev. Lett. 85 4458
[8] Bermel P, Rodriguez A, Johnson S G, Joannopoulos J D and Marin S 2006 Phys. Rev. A 74 43818
[9] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
[10] Liao J Q, Huang J F, Liu Y X, Kuang L M and Sun C P 2009 Phys. Rev. A 80 14301
[11] Zou B C, Tan Z, Musa M and Zhu Y fu 2014 Phys. Rev. A 89 23806
[12] Yan C H and Wei L F 2016 Phys. Rev. A 94 53816
[13] Stolyarov E V 2020 Phys. Rev. A 102 63709
[14] Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L and Imamoğlu A 2012 Nat. Photonics 6 605
[15] Guo M D 2021 Opt. Express 29 27653
[16] Ma L, Slattery O and Tang X 2017 J. Opt. 19 43001
[17] Long J L, Ku H S, Wu X, Xiu G, and Lake R E, Bal M, Liu Y X and Pappas D P 2018 Phys. Rev. Lett. 120 83602
[18] Dilley J, Nisbet-Jones P, Shore B W and Kuhn A 2012 Phys. Rev. A 85 23834
[19] Macha T, Urunuela E, Alt W, Ammenwerth M, Pandey D, Pfeifer H and Meschede D 2020 Phys. Rev. A 101 53406
[20] Körber M, Morin O, Langenfeld S, Neuzner A, Ritter S and Rempe G 2018 Nat. Photonics 12 18
[21] Oliveira R R, Borges H S, Souza J A and Villas-Boas C J 2018 Quantum. Inf. Process 17 311
[22] Wang L Y, Di K, Zhu Y F and Agarwal G S 2017 Phys. Rev. A 95 13841
[23] Li X M, Liu F M, Tian M H and Zhong X L 2020 J. Phys. Chem. C 124 23888
[24] Doeleman H M, Dieleman C D, Mennes C, Ehrler B and Koenderink A F 2020 ACS Nano 14 12027-36
[25] Hoang T B, Akselrod G M, Argyropoulos C, Huang J N, Smith D R and Mikkelsen M H 2015 Nat. Commun. 6 7788
[26] Peng P, Liu Y C, Xu D, Cao Q T, Lu G W, Gong Q H and Xiao Y F 2017 Phys. Rev. Lett. 119 233901
[27] Dutta R, Jain K, Venkatapathi M and Basu J K 2019 Phys. Rev. B 100 155413
[28] Salmanogli A 2019 Phys. Rev. A 100 13817
[29] Sobhani F, Heidarzadeh H and Bahador H 2020 Chin. Phys. B 29 068401
[30] Sidiropoulos T P H, Röder R, Geburt S, Hess O, Maier S A, Ronning C and Oulton R F 2014 Nat. Phys. 10 870
[31] Hoang T B, Akselrod G M and Mikkelsen M H 2016 Nano Lett. 16 270
[32] Kongsuwan N, Xiong X, Bai P, You J B, Png C E, Wu L and Hess O 2019 Nano Lett. 19 5853
[33] Ren J J, Gu Y, Zhao D X, Zhang F, Zhang T C and Gong Q H 2017 Phys. Rev. Lett. 118 73604
[34] Lu Y W, Li W, Liu R M, Wu Y X, Tan H S, Li Y Y and Liu J F 2022 Phys. Rev. B 106 115434
[35] Xu F X, Li X G and Zhang Z Y 2019 Acta Phys. Sin. 68 147103 (in Chinese)
[36] Schlosser N, Reymond G, Protsenko I and Grangier P 2001 Nature 411 1024
[37] Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
[38] Hugall J T, Singh A and van Hulst N F 2018 ACS Photonics 5 43
[39] Souza J A, Figueroa E, Chibani H, Villas-Boas C J and Rempe G 2013 Phys. Rev. Lett. 111 113602
[40] Waks E and Sridharan D 2010 Phys. Rev. A 82 43845
[41] Mücke M, Figueroa E, Bochmann J, Hahn C, Murr K, Ritter S, Villas-Boas C J and Rempe G 2010 Nature 465 7299
[42] Weis S, Rivire R, Delglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[43] Guo M D and Su X M 2018 Ann. Phys. 530 1700427
[44] Hamsen C, Tolazzi K N, Wilk T and Rempe G 2017 Phys. Rev. Lett. 118 133604
[45] Jauffred L, Taheri S M, Schmitt R, Linke H, Oddershede L B 2015 Nano Lett. 15 4713
[46] Sivun D, Vidal C, Munkhbat B, Arnold N, Klar T A and Hrelescu C 2016 Nano Lett. 16 7203
[47] Bek A, Jansen R, Ringler M, Mayilo S, Klar T A and Feldmann J 2008 Nano Lett. 8 485
[1] Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers
Zongxia Guo(郭宗夏), Gregory Malinowski, Pierre Vallobra, Yi Peng(彭懿), Yong Xu(许涌), Stéphane Mangin, Weisheng Zhao(赵巍胜), Michel Hehn, and Boyu Zhang(张博宇). Chin. Phys. B, 2023, 32(8): 087507.
[2] Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles
Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲). Chin. Phys. B, 2023, 32(7): 074206.
[3] Dynamic light storage based on controllable electromagnetically induced transparency effect
Liu-Ying Zeng(曾柳莹), Jun-Fang Wu(吴俊芳), and Chao Li(李潮). Chin. Phys. B, 2023, 32(6): 064213.
[4] One-shot detection limits of time-alignment two-photon illumination radar
Wen-Long Gao(高文珑), Lu-Ping Xu(许录平), Hua Zhang(张华), Bo Yan(阎博), Peng-Xian Li(李芃鲜), and Gui-Ting Hu(胡桂廷). Chin. Phys. B, 2023, 32(5): 050304.
[5] Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock
Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人). Chin. Phys. B, 2023, 32(5): 050601.
[6] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[7] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[8] Preparation of squeezed light with low average photon number based on dynamic Casimir effect
Na Li(李娜), Zi-Jian Lin(林资鉴), Mei-Song Wei(韦梅松), Ming-Jie Liao(廖明杰),Jing-Ping Xu(许静平), San-Huang Ke(柯三黄), and Ya-Ping Yang(羊亚平). Chin. Phys. B, 2023, 32(12): 120301.
[9] Corrigendum to “Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(12): 129901.
[10] Absorption spectra and enhanced Kerr nonlinearity in a four-level system
Hao-Jie Huangfu(皇甫浩杰), Ying-Jie Du(杜英杰), and Ai-Hua Gao(高爱华). Chin. Phys. B, 2023, 32(11): 114214.
[11] Electric field intensity measurement by using doublet electromagnetically induced transparency of cold Rb Rydberg atoms
Ting Gong(宫廷), Shuai Shi(师帅), Zhonghua Ji(姬中华), Guqing Guo(郭古青), Xiaocong Sun(孙小聪), Yali Tian(田亚莉), Xuanbing Qiu(邱选兵), Chuanliang Li(李传亮), Yanting Zhao(赵延霆), and Suotang Jia(贾锁堂). Chin. Phys. B, 2023, 32(10): 103202.
[12] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[13] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[14] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[15] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
No Suggested Reading articles found!