Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050304    DOI: 10.1088/1674-1056/ac9fc3
GENERAL Prev   Next  

One-shot detection limits of time-alignment two-photon illumination radar

Wen-Long Gao(高文珑), Lu-Ping Xu(许录平), Hua Zhang(张华), Bo Yan(阎博), Peng-Xian Li(李芃鲜), and Gui-Ting Hu(胡桂廷)
School of Aerospace Science and Technology, Xidian University, Xi'an 710126, China
Abstract  Quantum radar has recently gained increasing importance in a number of military applications. The estimation accuracy of one-shot quantum illumination events is significant in target detection. However, the accuracy is inevitably deteriorated by measurement noises. The traditional one-shot illumination emits a single photon towards a certain area which thermal noise exists in the path to, and the states of the received photons are hard to distinguish in the following processing. Therefore, a new optical probe source is proposed in this work. The independent detecting unit in the enhanced illumination is comprised of two photons aligned in time by using Hong-Ou-Mandel (HOM) interferometer. Further, one-shot detection in a general discrete model is realized and it proves a significant promotion in accuracy. The expansion of useful parts in parameter space and the lower minimal error probability for hypothesis testing have been mathematically demonstrated. The accuracy of one-shot detection can be effectively improved by the proposed scheme implying that it possesses great potential applications in quantum illumination and imaging.
Keywords:  quantum information      quantum optics      photonic  
Received:  16 August 2022      Revised:  29 October 2022      Accepted manuscript online:  03 November 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.55.Tv (Photonic crystal lasers and coherent effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071363) and the Key Research and Development Program of Shaanxi Province, China (Grant No. 2021LLRH-06).
Corresponding Authors:  Lu-Ping Xu, Hua Zhang     E-mail:  Lpxu@mail.xidian.edu.cn;zhanghua@mail.xidian.edu.cn

Cite this article: 

Wen-Long Gao(高文珑), Lu-Ping Xu(许录平), Hua Zhang(张华), Bo Yan(阎博), Peng-Xian Li(李芃鲜), and Gui-Ting Hu(胡桂廷) One-shot detection limits of time-alignment two-photon illumination radar 2023 Chin. Phys. B 32 050304

[1] Fan L and Zubairy M S 2018 Phys. Rev. A 98 012319
[2] Lee S Y, Ihn Y S and Kim Z 2021 Phys. Rev. A 103 012411
[3] Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S and Shapiro J H 2008 Phys. Rev. Lett. 101 253601
[4] Zhang S, Guo J, Bao W, Shi J, Jin C, Zou X and Guo G 2014 Phys. Rev. A 89 062309
[5] Guha S and Erkmen B I 2009 Phys. Rev. A 80 052310
[6] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337
[7] Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773
[8] Niu X L, Huang Y F, Xiang G Y, Guo G C and Ou Z 2008 Opt. Lett. 33 968
[9] Roelofs M, Suna A, Bindloss W and Bierlein J 1994 J. Appl. Phys. 76 4999
[10] Yung M H, Meng F, Zhang X M and Zhao M J 2020 npj Quantum Information 6 75
[11] Banaszek K, U'Ren A B and Walmsley I A 2001 Opt. Lett. 26 1367
[12] U'Ren A, Silberhorn C, Banaszek K, Walmsley I, Erdmann R, Grice W and Raymer M 2005 Laser Physics 15 146
[13] Bennink R S 2010 Phys. Rev. A 81 053805
[14] Wong F, Shapiro J and Kim T 2006 Laser Physics 16 1517
[15] Louisell W, Yariv A and Siegman A 1961 Phys. Rev. 124 1646
[16] Burnham D C and Weinberg D L 1970 Phys. Rev. Lett. 25 84
[17] Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044
[18] Evans P G, Bennink R S, Grice W P, Humble T S and Schaake J 2010 Phys. Rev. Lett. 105 253601
[19] Howell J C, Bennink R S, Bentley S J and Boyd R W 2004 Phys. Rev. Lett. 92 210403
[20] Dada A C, Leach J, Buller G S, Padgett M J and Andersson E 2011 Nat. Phys. 7 677
[21] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[22] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[23] O'brien J L 2007 Science 318 1567
[24] Kitaev A Y, Shen A, Vyalyi M N and Vyalyi M N, 2002 Classical and quantum computation (American Mathematical Soc.)
[25] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[26] Buluta I and Nori F 2009 Science 326 108
[27] Yung M H, Whitfield J D, Boixo S, Tempel D G and Aspuru-Guzik A 2014 Quantum Information and Computation for Chemistry pp. 67-106
[28] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[29] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[30] Cheung J, Chunnilall C, Woolliams E, Fox N, Mountford J, Wang J and Thomas P 2007 J. Mod. Opt. 54 373
[31] Chang C S, Vadiraj A, Bourassa J, Balaji B and Wilson C 2019 Appl. Phys. Lett. 114 112601
[32] Jonsson R, Di Candia R, Ankel M, Ström A and Johansson G 2020 IEEE Radar Conference (RadarConf20). 2020, pp. 1-6
[33] Peshko I, Mogilevtsev D, Karuseichyk I, Mikhalychev A, Nizovtsev A, Slepyan G Y and Boag A 2019 Opt. Express 27 29217
[34] Giovannetti V, Lloyd S and Maccone L 2001 Nature 412 417
[35] Jacobson J, Björk G, Chuang I and Yamamoto Y 1995 Phys. Rev. Lett. 74 4835
[36] Shapiro J H 2007 Proceedings of SPIE 6603 Noise and Fluctuations in Photonics, Quantum Optics, and Communications, June 7, 2007, Florence, Italy, p. 660306
[37] Brandt H E 1999 Am. J. Phys. 67 434
[38] Lloyd S 2008 Science 321 1463
[39] Wilde M M, Tomamichel M, Lloyd S and Berta M 2017 Phys. Rev. Lett. 119 120501
[40] Zhuang Q, Zhang Z and Shapiro J H 2017 JOSA B 34 1567
[41] Lopaeva E, Berchera I R, Degiovanni I P, Olivares S, Brida G and Genovese M 2013 Phys. Rev. Lett. 110 153603
[42] De Palma G and Borregaard J 2018 Phys. Rev. A 98 012101
[43] Harrow A W, Hassidim A, Leung D W and Watrous J 2010 Phys. Rev. A 81 032339
[44] Bae J, Chruściński D and Piani M 2019 Phys. Rev. Lett. 122 140404
[45] Piani M and Watrous J 2009 Phys. Rev. Lett. 102 250501
[46] Sacchi M F 2005 Phys. Rev. A 72 014305
[47] Sacchi M F 2005 Phys. Rev. A 71 062340
[48] Clarke R B, Chefles A, Barnett S M and Riis E 2001 Phys. Rev. A 63 040305
[49] Zhuang Q, Zhang Z and Shapiro J H 2017 Phys. Rev. Lett. 118 040801
[50] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155
[51] Lax M 1966 Phys. Rev. 145 110
[52] Yan B, Giorgetti A and Paolini E 2021 Signal Processing 189 108257
[53] Yan B, Paolini E, Xu N, Sun Z and Xu L 2021 Signal Processing 179 107821
[54] Yan B, Paolini E, Xu L and Lu H M 2022 IEEE Transactions on Geoscience and Remote Sensing
[55] Pittman T B, Shih Y, Strekalov D and Sergienko A V 1995 Phys. Rev. A 52 R3429
[56] Wong F N C, Shapiro J H and Kim T 2006 Laser Physics 16 1517
[57] Brida G, Degiovanni I P, Genovese M, Rastello M L and Ruo-Berchera I 2010 Opt. Express 18 20572
[58] Helstrom C W 1969 J. Stat. Phys. 1 231
[1] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[2] Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization
Shenshen Yan(闫申申), Yan Liu(刘岩), Zi Wang(王子), Xiaohua Lan(兰晓华), Yi Wang(汪毅), and Jie Ren(任捷). Chin. Phys. B, 2023, 32(5): 057802.
[3] Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements
Yuyu Chen(陈玉玉), Fenzhuo Guo(郭奋卓), Shihui Wei(魏士慧), and Qiaoyan Wen(温巧燕). Chin. Phys. B, 2023, 32(4): 040309.
[4] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[5] Spontaneous emission from Λ-type three-level atom driven by bichromatic field in anisotropic double-band photonic crystals
Kai Ling(凌凯), Li Jiang(姜丽), Ren-Gang Wan(万仁刚), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2023, 32(4): 044211.
[6] Design and simulation of a silicon-based hybrid integrated optical gyroscope system
Dao-Xin Sun(孙道鑫), Dong-Liang Zhang(张东亮), Li-Dan Lu(鹿利单), Tao Xu(徐涛),Xian-Tong Zheng(郑显通), Zhe-Hai Zhou(周哲海), and Lian-Qing Zhu(祝连庆). Chin. Phys. B, 2023, 32(4): 044212.
[7] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[8] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[9] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[10] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[11] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[12] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[15] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
No Suggested Reading articles found!