|
Abstract In contrast to interferometry-based quantum sensing, where interparticle interaction is detrimental, quantum many-body probes exploit such interactions to achieve quantum-enhanced sensitivity. In most of the studied quantum many-body probes, the interaction is considered to be short-ranged. Here, we investigate the impact of long-range interaction at various filling factors on the performance of Stark quantum probes for measuring a small gradient field. These probes harness the ground state Stark localization phase transition which happens at an infinitesimal gradient field as the system size increases. Our results show that while super-Heisenberg precision is always achievable in all ranges of interaction, the long-range interacting Stark probe reveals two distinct behaviors. First, by algebraically increasing the range of interaction, the localization power is enhanced and thus the sensitivity of the probe decreases. Second, as the interaction range becomes close to a fully connected graph its effective localization power disappears and thus the sensitivity of the probe starts to enhance again. The super-Heisenberg precision is achievable throughout the extended phase until the transition point and remains valid even when the state preparation time is incorporated in the resource analysis. As the probe enters the localized phase, the sensitivity decreases and its performance becomes size-independent, following a universal behavior. In addition, our analysis shows that lower filling factors lead to better precision for measuring weak gradient fields.
|
Received: 09 July 2023
Revised: 15 August 2023
Accepted manuscript online: 23 August 2023
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0306703), the National Science Foundation of China (Grant Nos. 12050410253, 92065115, and 12274059), and the Ministry of Science and Technology of China (Grant No. QNJ2021167001L). Rozhin Yousefjani thanks the National Science Foundation of China for the International Young Scientists Fund (Grant No. 12250410242). |
Corresponding Authors:
Rozhin Yousefjani, Abolfazl Bayat
E-mail: rozhinyousefjani@uestc.edu.cn;abolfazl.bayat@uestc.edu.cn
|
Cite this article:
Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat Long-range interacting Stark many-body probes with super-Heisenberg precision 2023 Chin. Phys. B 32 100313
|
[1] Cacciapuoti L and Salomon C 2009 Eur. Phys. J.: Spec. Top. 172 57 [2] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 [3] Dolde F, Fedder H, Doherty M W, et al. 2011 Nat. Phys. 7 459 [4] Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M and Gleyzes S 2016 Nature 535 262 [5] Budker D and Romalis M 2007 Nat. Phys. 3 227 [6] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P, Yacoby A, Walsworth R and Lukin M 2008 Nat. Phys. 4 810 [7] Tanaka T, Knott P, Matsuzaki Y, Dooley S, Yamaguchi H, Munro W J and Saito S 2015 Phys. Rev. Lett. 115 170801 [8] Tino G M, Bassi A, Bianco G, et al. 2019 Eur. Phys. J. D 73 228 [9] Aasi J, Abadie J, Abbott B, et al. 2013 Nat. Photonics 7 613 [10] Dailey C, Bradley C, Jackson K D F, Sulai I A, Pustelny S, Wickenbrock A and Derevianko A 2021 Nat. Astron. 5 150 [11] Tsai Y D, Eby J and Safronova M S 2023 Nat. Astron. 7 113 [12] Xiong F, Wu T, Leng Y, et al. 2021 Phys. Rev. Res. 3 013205 [13] Aslam N, Zhou H, Urbach E K, Turner M J, Walsworth R L, Lukin M D and Park H 2023 Nat. Rev. Phys. 5 157 [14] Schirhagl R, Chang K, Loretz M and Degen C L 2014 Rev. Phys. Chem. 65 83 [15] Shi F, Kong F, Zhao P, et al. 2018 Nat. Methods 15 697 [16] Paris M G 2009 Int. J. Quantum Inf. 7 125 [17] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002 [18] Greenberger D M, Horne M A and Zeilinger A 1989 In Bell's Theorem, Quantum Theory and Conceptions of the Universe (Berlin: Springer) pp. 69-72 [19] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330 [20] Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Science 304 1476 [21] Boixo S, Flammia S T, Caves C M and Geremia J M 2007 Phys. Rev. Lett. 98 090401 [22] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401 [23] Banaszek K, Demkowicz-Dobrzański R and Walmsley I A 2009 Nat. Photonics 3 673 [24] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222 [25] Fröwis F and Düur W 2011 Phys. Rev. Lett. 106 110402 [26] Wang K, Wang X, Zhan X, Bian Z, Li J, Sanders B C and Xue P 2018 Phys. Rev. A 97 042112 [27] Kwon H, Tan K C, Volkoff T and Jeong H 2019 Phys. Rev. Lett. 122 040503 [28] Demkowicz-Dobrzański R, Kolodyński J and Guţǎ M 2012 Nat. Commun. 3 1063 [29] Albarelli F, Rossi M A, Tamascelli D and Genoni M G 2018 Quantum 2 110 [30] Nagata T, Okamoto R, O'Brien J L, Sasaki K and Takeuchi S 2007 Science 316 726 [31] Malia B K, Wu Y F, Martínez-Rincón J and Kasevich M A 2022 Nature 612 661 [32] Marciniak C D, Feldker T, Pogorelov I, Kaubruegger R, Vasilyev D V, van Bijnen R, Schindler P, Zoller P, Blatt R and Monz T 2022 Nature 603 604 [33] De Pasquale A, Rossini D, Facchi P and Giovannetti V 2013 Phys. Rev. A 88 052117 [34] Pang S and Brun T A 2014 Phys. Rev. A 90 022117 [35] Skotiniotis M, Sekatski P and Dür W 2015 New J. Phys. 17 073032 [36] Raghunandan M, Wrachtrup J and Weimer H 2018 Phys. Rev. Lett. 120 150501 [37] Heugel T L, Biondi M, Zilberberg O and Chitra R 2019 Phys. Rev. Lett. 123 173601 [38] Yang L P and Jacob Z 2019 J. Appl. Phys. 126 174502 [39] Ding D S, Liu Z K, Shi B S, Guo G C, Molmer K and Adams C S 2022 Nat. Phys. 18 1447 [40] Zanardi P and Paunković N 2006 Phys. Rev. E 74 031123 [41] Wei B B 2019 Phys. Rev. A 99 042117 [42] Chu Y, Zhang S, Yu B and Cai J 2021 Phys. Rev. Lett. 126 010502 [43] Liu R, Chen Y, Jiang M, Yang X, Wu Z, Li Y, Yuan H, Peng X and Du J 2021 NPJ Quantum Inf. 7 170 [44] Montenegro V, Mishra U and Bayat A 2021 Phys. Rev. Lett. 126 200501 [45] Mirkhalaf S S, Orenes D B, Mitchell M W and Witkowska E 2021 Phys. Rev. A 103 023317 [46] Di Candia R, Minganti F, Petrovnin K, Paraoanu G and Felicetti S 2023 NPJ Quantum Inf. 9 23 [47] Zanardi P, Quan H, Wang X and Sun C 2007 Phys. Rev. A 75 032109 [48] Gu S J, Kwok H M, Ning W Q, et al. 2008 Phys. Rev. B 77 245109 [49] Zanardi P, Paris M G and Venuti L C 2008 Phys. Rev. A 78 042105 [50] Invernizzi C, Korbman M, Venuti L C and Paris M G 2008 Phys. Rev. A 78 042106 [51] Gu S J 2010 Int. J. Mod. Phys. B 24 4371 [52] Gammelmark S and Molmer K 2011 New J. Phys. 13 053035 [53] Rams M M, Sierant P, Dutta O, Horodecki P and Zakrzewski J 2018 Phys. Rev. X 8 021022 [54] Mishra U and Bayat A 2021 Phys. Rev. Lett. 127 080504 [55] Mishra U and Bayat A 2022 Sci. Rep. 12 14760 [56] Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301 [57] Baden M P, Arnold K J, Grimsmo A L, Parkins S and Barrett M D 2014 Phys. Rev. Lett. 113 020408 [58] Klinder J, Keßler H W M, Mathey L and Hemmerich A 2015 Proc. Natl. Acad. Sci. USA 112 3290 [59] Rodriguez S, Casteels W, Storme F, et al. 2017 Phys. Rev. Lett. 118 247402 [60] Fitzpatrick M, Sundaresan N M, Li A C, Koch J and Houck A A 2017 Phys. Rev. X 7 011016 [61] Fink J M, Dombi A, Vukics A, Wallraff A and Domokos P 2017 Phys. Rev. X 7 011012 [62] Ilias T, Yang D, Huelga S F and Plenio M B 2022 PRX Quantum 3 010354 [63] Montenegro V, Genoni M, Bayat A and Paris M 2023 arXiv: 2301.02103 [64] Iemini F, Fazio R and Sanpera A 2023 arXiv: 2306.03927 [65] Budich J C and Bergholtz E J 2020 Phys. Rev. Lett. 125 180403 [66] Sarkar S, Mukhopadhyay C, Alase A and Bayat A 2022 Phys. Rev. Lett. 129 090503 [67] Koch F and Budich J C 2022 Phys. Rev. Res. 4 013113 [68] Yu M, Li X, Chu Y, Mera B, Ünal F N, Yang P, Liu Y, Goldman N and Cai J 2022 arXiv: 2206.00546 [69] Sahoo A, Mishra U and Rakshit D 2023 arXiv: 2305.02315 [70] He X, Yousefjani R and Bayat A 2023 Phys. Rev. Lett. 131 010801 [71] Wiseman H M 1995 Phys. Rev. Lett. 75 4587 [72] Fernández-Lorenzo S and Porras D 2017 Phys. Rev. A 96 013817 [73] Armen M A, Au J K, Stockton J K, Doherty A C and Mabuchi H 2002 Phys. Rev. Lett. 89 133602 [74] Fujiwara A 2006 J. Phys. A: Math. Gen. 39 12489 [75] Higgins B L, Berry D W, Bartlett S D, Wiseman H M and Pryde G J 2007 Nature 450 393 [76] Berry D W, Higgins B L, Bartlett S D, Mitchell M W, Pryde G J and Wiseman H M 2009 Phys. Rev. A 80 052114 [77] Said R, Berry D and Twamley J 2011 Phys. Rev. B 83 125410 [78] Okamoto R, Iefuji M, Oyama S, Yamagata K, Imai H, Fujiwara A and Takeuchi S 2012 Phys. Rev. Lett. 109 130404 [79] Bonato C, Blok M S, Dinani H T, Berry D W, Markham M L, Twitchen D J and Hanson R 2016 Nat. Nanotechnol. 11 247 [80] Okamoto R, Oyama S, Yamagata K, Fujiwara A and Takeuchi S 2017 Phys. Rev. A 96 022124 [81] Albarelli F, Rossi M A, Paris M G and Genoni M G 2017 New J. Phys. 19 123011 [82] Gammelmark S and Molmer K 2014 Phys. Rev. Lett. 112 170401 [83] Rossi M A, Albarelli F, Tamascelli D and Genoni M G 2020 Phys. Rev. Lett. 125 200505 [84] Yang D, Huelga S F and Plenio M B 2023 Phys. Rev. X 13 031012 [85] Burgarth D, Giovannetti V, Kato A N and Yuasa K 2015 New J. Phys. 17 113055 [86] Montenegro V, Jones G S, Bose S and Bayat A 2022 Phys. Rev. Lett. 129 120503 [87] Morong W, Liu F, Becker P, Collins K, Feng L, Kyprianidis A, Pagano G, You T, Gorshkov A and Monroe C 2021 Nature 599 393 [88] Smith J, Lee A, Richerme P, Neyenhuis B, Hess P W, Hauke P, Heyl M, Huse D A and Monroe C 2016 Nat. Phys. 12 907 [89] Rajabi F, Motlakunta S, Shih C Y, Kotibhaskar N, Quraishi Q, Ajoy A and Islam R 2019 NPJ Quantum Inf. 5 32 [90] Choi J Y, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I and Gross C 2016 Science 352 1547 [91] Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Léonard J and Greiner M 2019 Nature 573 385 [92] Garbe L, Abah O, Felicetti S and Puebla R 2022 Quantum Sci. Technol. 7 035010 [93] Yang J, Pang S, del Campo A and Jordan A N 2022 Phys. Rev. Res. 4 013133 [94] Waddington D E, Boele T, Maschmeyer R, Kuncic Z and Rosen M S 2020 Sci. Adv. 6 eabb0998 [95] Koonjoo N, Zhu B, Bagnall G C, Bhutto D and Rosen M 2021 Sci. Rep. 11 8248 [96] Snadden M, McGuirk J, Bouyer P, Haritos K and Kasevich M 1998 Phys. Rev. Lett. 81 971 [97] Griggs C, Moody M, Norton R, Paik H and Venkateswara K 2017 Phys. Rev. Appl. 8 064024 [98] Stray B, Lamb A, Kaushik A, et al. 2022 Nature 602 590 [99] Phillips A M, Wright M J, Riou I, Maddox S, Maskell S and Ralph J F 2022 AVS Quantum Sci. 4 024404 [100] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J and Mavalvala N 2008 Nat. Phys. 4 472 [101] Dimopoulos S, Graham P W, Hogan J M, Kasevich M A and Rajendran S 2009 Phys. Lett. B 678 37 [102] Asenbaum P, Overstreet C, Kim M, Curti J and Kasevich M A 2020 Phys. Rev. Lett. 125 191101 [103] Parker R H, Yu C, Zhong W, Estey B and Müller H 2018 Science 360 191 [104] Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M and Tino G 2014 Nature 510 518 [105] Pezzé L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys. 90 035005 [106] Cramér H 1946 Mathematical Methods of Statistics (PMS-9) (Princeton: Princeton University Press) [107] Holevo A S 1984 In Quantum Probability and Applications to the Quantum Theory of Irreversible Processes (Berlin: Springer) pp. 153-172 [108] Meyer J J 2021 Quantum 5 539 [109] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [110] Tóth G and Apellaniz I 2014 J. Phys. A: Math. Theor. 47 424006 [111] Albuquerque A F, Alet F, Sire C and Capponi S 2010 Phys. Rev. B 81 064418 [112] Campos V L and Zanardi P 2007 Phys. Rev. Lett. 99 095701 [113] Schwandt D, Alet F and Capponi S 2009 Phys. Rev. Lett. 103 170501 [114] You W L, Li Y W and Gu S J 2007 Phys. Rev. E 76 022101 [115] Kolovsky A R 2008 Phys. Rev. Lett. 101 190602 [116] van Nieuwenburg E, Baum Y and Refael G 2019 Proc. Natl. Acad. Sci. USA 116 9269 [117] Schulz M, Hooley C, Moessner R and Pollmann F 2019 Phys. Rev. Lett. 122 040606 [118] Yao R and Zakrzewski J 2020 Phys. Rev. B 102 104203 [119] Chanda T, Yao R and Zakrzewski J 2020 Phys. Rev. Res. 2 032039 [120] Luitz D J, Laflorencie N and Alet F 2015 Phys. Rev. B 91 081103 [121] Hauschild J and Pollmann F 2018 SciPost Phys. Lect. Notes 5 [122] Melchert O 2009 arXiv: 0910.5403 [123] Sorge A pyfssa 0.7.6, version 0.7.6, 2015 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|