Abstract Floquet dynamical quantum phase transitions (DQPTs), which are nonanalytic phenomena recuring periodically in time-periodic driven quantum many-body systems, have been widely studied in recent years. In this article, the Floquet DQPTs in transverse XY spin chains under the modulation of δ-function periodic kickings are investigated. We analytically solve the system, and by considering the eigenstate as well as the ground state as the initial state of the Floquet dynamics, we study the corresponding multiple Floquet DQPTs emerged in the micromotion with different kicking moments. The rate function of return amplitude, the Pancharatnam geometric phase and the dynamical topological order parameter are calculated, which consistently verify the emergence of Floquet DQPTs in the system.
Corresponding Authors:
Lin-Cheng Wang
E-mail: wanglc@dlut.edu.cn
Cite this article:
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成) Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings 2023 Chin. Phys. B 32 090302
[1] Sachdev S 2011 Quantum phase transitions (Cambridge: Cambridge University Press) [2] Nielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press). [3] Meng Y, Mei F, Chen G and Jia S T 2020 Chin. Phys. B29 070501 [4] Si Y, Kong L J, Zhang Y, Ren Z C, Pan Y, Tu C H, Li Y N and Wang H T 2017 Chin. Phys. Lett.34 044204 [5] Yuan Z G and Zhang P 2015 Chin. Phys. Lett.32 060301 [6] Fläschner N, Vogel D, Tarnowski M, Rem B S, Luhmann D S, Heyl M, Budich J C, Mathey L, Sengstock K and Weitenberg C 2014 Science352 6289 [7] D'Alessio L and Rigol M 2015 Nat. Commun.6 8336 [8] Hauke P, Lewenstein M and Eckardt A 2014 Phys. Rev. Lett.113 045303 [9] Ye J and Li F 2020 Phys. Rev. A102 042209 [10] Wang K K, Qiu X Z,Xiao L, Zhan X, Bian Z H, Yi W and Xue P 2019 Phys. Rev. Lett.122 020501 [11] Yang C and Chen S 2019 Acta Phys. Sin.68 220304 (in Chinese) [12] Heyl M 2018 Rep. Prog. Phys.81 054001 [13] Jurcevic P, Shen H, Hauke P, Maier C, Brydges T, Hempel C, Lanyon B P, Heyl M, Blatt R and Roos C F 2017 Phys. Rev. Lett.119 080501 [14] Zhang J, Pagano G, Hess P W, Kyprianids A, Becker P, Kaplan H, Gorshkov A V, Gong Z X and Monroe C 2017 Nature551 661 [15] Tian T, Ke Y, Zhang L, Lin S, Shi Z, Huang P, Lee C and Du J 2019 Phys. Rev. B100 024310 [16] Zvyagin A A 2016 Low Temp. Phys.42 971 [17] Heyl M 2019 Europhys. Lett.125 26001 [18] Yang K, Zhou L E, Ma W C, Kong X, Wang P F, Qin X, Rong X, Wang Y, Shi F Z, Gong J B and Du J F 2019 Phys. Rev. B100 085308 [19] Gu Z, Fertig H A, Arovas D P and Auerbach A 2011 Phys. Rev. Lett.107 216601 [20] Russomanno A, Silva A and Santoro G E 2012 Phys. Rev. Lett.109 257201 [21] Russomanno A, Silva A and Santoro G E 2013 J. Stat. Mech.P09012 [22] Heyl M and Budich J C 2017 Phys. Rev. B96 180304(R) [23] Bhattacharya U, Bandyopadhyay S and Dutta A 2017 Phys. Rev. B96 180303(R) [24] Heyl M, Polkovnikov A and Kehrein S 2013 Phys. Rev. Lett.110 135704 [25] Yang C, Li L and Chen S 2018 Phys. Rev. B97 060304(R) [26] Budich J C and Heyl M 2016 Phys. Rev. B93 085416 [27] Vajna S and Dóra B 2015 Phys. Rev. B91 155127 [28] Lindner N H, Refael G and Galitski V 2011 Nat. Phys.7 490 [29] Hauke P, Tieleman O, Celi A, Olschlager C, Simonet J, Struck J, Weinberg M, Windpassinger P, Sengstock K, Lewenstein M and Eckardt A 2012 Phys. Rev. Lett.109 145301 [30] Nakagawa M and Kawakami N 2014 Phys. Rev. A89 013627 [31] Guo L, Marthaler M and Schon G 2013 Phys. Rev. Lett.111 205303 [32] Cayssol J, Dora B, Simon F and Moessner R 2013 Phys. Status Solidi RRL7 101 [33] Tong Q J, An J H, J Gong, Luo H G and Oh C H 2013 Phys. Rev. B87 201109 [34] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Nolte S, Segev M and Szameit A 2013 Nature496 196 [35] Vorberg D, Wustmann W, Ketzmerick R and Eckardt A 2013 Phys. Rev. Lett.111 240405 [36] Yin M J, Wang T, Lu X T, Li T, Wang Y B, Zhang X F, Li W D, Smerzi A and Chang H 2021 Chin. Phys. B38 073201 [37] Wang H Y and Liu W M 2020 Chin. Phys. B29 047301 [38] Chen C, An J H, Luo H G, Sun C P and Oh C H 2015 Phys. Rev. A91 052122 [39] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B84 235108 [40] Oka T and Aoki H 2009 Phys. Rev. B79 081406 [41] Gómez-León A and Platero G 2012 Phys. Rev. B86 115318 [42] Chang P Y, You J S, Wen X and Ryu S 2020 Phys. Rev. Res.2 033069 [43] Stojanović V M 2020 Phys. Rev. B101 134301 [44] Kosior A, Syrwid A and Sacha K 2018 Phys. Rev. A98 023612 [45] Kosior A and Sacha K 2018 Phys. Rev. A97 053621 [46] Jafari R and Akbari A 2021 Phys. Rev. A103 012204 [47] Zamani S, Jafari R and Langari A 2020 Phys. Rev. B102 144306 [48] Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N and Fan H 2019 Phys. Rev. Appl.11 044080 [49] Zamani S, Jafari R and Langari A 2022 Phys. Rev. B105 094304 [50] Zhou L and Du Q 2021 J. Phys.: Condens. Matter33 345403 [51] Jafari R, Akbari A, Mishra U and Johannesson H 2022 Phys. Rev. B105 094311 [52] Naji J, Jafari R, Zhou L and Langari A 2022 Phys. Rev. B106 094314 [53] Zhu H X, Wang T T, Gao J S, Li S, Sun Y J and Liu G L 2014 Chin. Phys. Lett.31 030503 [54] Cai D H and Yi W 2022 Phys. Rev. A105 042812 [55] Agarwala A, Bhattacharya U, Dutta A and Sen D 2016 Phys. Rev. B93 174301 [56] Wang L C, Li X P and Li C F 2017 Phys. Rev. B95 104308 [57] Mishra T, Pallaprolu A, Sarkar T G and Bandyopadhyay J N 2018 Phys. Rev. B97 085405 [58] Tamang L, Nag T and Biswas T 2021 Phys. Rev. B104 174308 [59] Chakrabarti B K, Dutta A and Sen P 1996 Quantum Ising Phases and Transitions in Transverse Ising Models (Berlin: Springer) [60] Sharma S, Mukherjee V and Dutta A 2012 Eur. Phys. J. B85 143 [61] Rossini D, Calarco T, Giovannetti V, Montangero S and Fazio R 2007 Phys. Rev. A75 032333 [62] Cucchietti F M, Fernandez-Vidal S and Paz J P 2007 Phys. Rev. A75 032337 [63] Campos Venuti L and Zanardi P 2010 Phys. Rev. A81 022113 [64] Damski B, Quan H T and Zurek W H 2011 Phys. Rev. A83 062104 [65] Mukherjee V, Sharma S and Dutta A 2012 Phys. Rev. B86 020301 (R) [66] Nag T, Divakaran U and Dutta A 2012 Phys. Rev. B86 020401 (R) [67] Sharma S, Russomanno A, Santoro G E and Dutta A 2014 Europhys. Lett.106 67003 [68] Yi X X and Wang W 2007 Phys. Rev. A75 032103 [69] Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A75 012102 [70] Sun Z, Wang X and Sun C P 2007 Phys. Rev. A75 062312 [71] Zanardi P and Paunkovic N 2006 Phys. Rev. E74 031123 [72] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett.96 140604 [73] Zanardi P, Quan H T, Wang X and Sun C P 2007 Phys. Rev. A75 032109 [74] Yi X X, Cui H T and Wang L C 2006 Phys. Rev. A74 054102 [75] Tan J T, Luo Y R, Zhou Z and Hai W H 2006 Chin. Phys. Lett.33 070302 [76] Zhu S L 2006 Phys. Rev. Lett.96 077206 [77] Carollo A C M and Pachos J K 2005 Phys. Rev. Lett.95 157203 [78] Li X N, Zhou L and Zhao G Z 2019 Acta Phys. Sin.68 238101 (in Chinese) [79] Du Q, Lan K, Zhang Y H and Jiang L J 2020 Chin. Phys. B29 030302 [80] Guo X Y, Zhong J Z, Li P, Wei B Y, Liu S and Zhao J L 2020 Chin. Phys. B29 040305 [81] Peng X H, Wu S F, Li J, Suter D and Du J F 2010 Phys. Rev. Lett.105 240405 [82] Zhou H, Li Z K, Wang H Y, Chen H W, Peng X H and Du J F 2016 Chin. Phys. Lett.33 060301
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.