Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080308    DOI: 10.1088/1674-1056/acd8b3
RAPID COMMUNICATION Prev   Next  

Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer

Yu Sun(孙宇)1, Chang-Wei Sun(孙昌伟)2, Wei Zhou(周唯)1, Ran Yang(杨然)1, Jia-Chen Duan(端家晨)1, Yan-Xiao Gong(龚彦晓)1, Ping Xu(徐平)3,†, and Shi-Ning Zhu(祝世宁)1
1. National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
2. NanZhi Institude of Advanced Optoelectronic Integration, Nanjing 210018, China;
3. Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract  Combining a Ti-diffusion periodically poled lithium niobate (PPLN) waveguide with a Sagnac interferometer, two opposite directions type-II spontaneous parametric down conversions (SPDC) occur coherently and yield a high brightness, high stability polarization entanglement source. The source produces degenerate photon pairs at 1540.4 nm with a brightness of B = (1.36±0.03)×106 pairs/(s· nm·mW). We perform quantum state tomography to reconstruct the density matrix of the output state and obtain a fidelity of F=0.983±0.001. The high brightness and phase stability of our waveguide source enable a wide range of quantum information experiments operating at a low pump power as well as hold the advantage in mass production which can promote the practical applications of quantum technologies.
Keywords:  polarization entanglement source      Sagnac interferometer      quantum information      lithium niobate waveguide  
Received:  11 May 2023      Revised:  11 May 2023      Accepted manuscript online:  25 May 2023
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos.2022YFF0712800 and 2019YFA0308700).
Corresponding Authors:  Ping Xu     E-mail:  pingxu520@nju.edu.cn

Cite this article: 

Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁) Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer 2023 Chin. Phys. B 32 080308

[1] Ekert A K 1991 Phys. Rev. Lett. 67, 661
[2] Jennewein T, Simon C, Weihs G, Weinfurter H and Zeilinger A 2000 Phys. Rev. Lett. 84,4729
[3] Liu H Y, Tian X H, Gu C S, Fan P F, Ni X, Yang R, Zhang J N, Hu M Z, Guo J, Cao X, Hu X P, Zhao G, Lu Y Q, Gong Y X, Xie Z D and Zhu S N 2021 Phys. Rev. Lett. 126,020503
[4] Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li B, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C, Wang J Y and Pan J W 2021 Science 356,1140
[5] Daniel G and Isaac L C 1999 Nature 402, 390
[6] Knill E, Laflamme R and Milburn G J 2001 Nature 409, 46
[7] Alberto P, Jonathan C F M and Jeremy L O B 2009 Science 325 1221
[8] Jacob M, Nicholas C H, Gregory R S, Yoav L and Dirk E 2015 Phys. Rev. A 92 032322
[9] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[10] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641
[11] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y and Pan J W 2017 Nature 549 70
[12] Kwait P G, Mattle C, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y H 1995 Phys. Rev. Lett. 75 4337
[13] Ljunggren D, Tengner M, Marsden P and Pelton M 2006 Phys. Rev. A 73 032326
[14] Suhara T, Nakaya G, Kawashima J and Fujimura M 2009 IEEE Photonics Technology Letters 21 1096
[15] Thyagarajan K, Lugani J, Ghosh S, Sinha K, Martin A, Ostrowsky D B, Alibart O and Tanzilli S 2009 Phys. Rev. A 80 052321
[16] Sun C W, Wu S H, Duan J C, Zhou J W, Xia J L, Xu P, Xie Z D, Gong Y X and Zhun S N 2019 Opt. Lett. 44 5598
[17] Kuo P S, Verma V B and Nam S W 2020 OSA Continuum 3 15
[18] Yosshizawa A and Tsuchida H 2004 Appl. Phys. Lett. 85 2457
[19] König F, Mason E J, Wong F N C and Albota M A 2005 Phys. Rev. A 71 033805
[20] Clausen C, Bussiéres F, Tiranov A, Herrmann H, Silberhorn C, Sohler W, Afzelius M and Gisin N 2014 New J. Phys. 16 093058
[21] Sansoni L, Luo K H, Ricken R, Krapick S, Herrmann H and Silberhorn C 2017 npj Quantum Inf 3 5
[22] Shi B S and Tomita A 2004 Phys. Rev. A 69 013803
[23] Kim T, Fiorentino M and Wong F N C 2006 Phys. Rev. A 73 012316
[24] Fedrizzi A, Herbst T, Poppe A, Jennewein T and Zeilinger A 2007 Opt. Express 15 15377
[25] Medic M, Altepeter J B, Hall M A, Patel M and Kumar P 2010 Opt. Lett. 35 802
[26] Jabir M V and Samanta G K 2017 Sci. Rep. 7 12613
[27] Graham R and Haken H 1968 Z. Phys. 210 276
[28] Santandrea M, Stefszky M, Roeland G and Silberhorn 2019 New J. Phys. 21 123005
[29] Helmfrid S and Arvidsson G 1991 J. Opt. Soc. Am. B 8 797
[30] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[31] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[1] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[2] Algorithm for evaluating distance-based entanglement measures
Yixuan Hu(胡奕轩), Ye-Chao Liu(刘烨超), and Jiangwei Shang(尚江伟). Chin. Phys. B, 2023, 32(8): 080307.
[3] One-shot detection limits of time-alignment two-photon illumination radar
Wen-Long Gao(高文珑), Lu-Ping Xu(许录平), Hua Zhang(张华), Bo Yan(阎博), Peng-Xian Li(李芃鲜), and Gui-Ting Hu(胡桂廷). Chin. Phys. B, 2023, 32(5): 050304.
[4] Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements
Yuyu Chen(陈玉玉), Fenzhuo Guo(郭奋卓), Shihui Wei(魏士慧), and Qiaoyan Wen(温巧燕). Chin. Phys. B, 2023, 32(4): 040309.
[5] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[6] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[7] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[8] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[9] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[10] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[11] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[12] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[13] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[14] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[15] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
No Suggested Reading articles found!