Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100312    DOI: 10.1088/1674-1056/acd8b0
Special Issue: SPECIAL TOPIC — Fabrication and manipulation of the second-generation quantum systems
TOPICAL REVIEW—Fabrication and manipulation of the second-generation quantum systems Prev   Next  

Digital holographic imaging via direct quantum wavefunction reconstruction

Meng-Jun Hu(胡孟军)1,† and Yong-Sheng Zhang(张永生)2,3,4,‡
1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
2 Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
4 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  Wavefunction is a fundamental concept of quantum theory. Recent studies have shown surprisingly that wavefunction can be directly reconstructed via the measurement of weak value. The weak value based direct wavefunction reconstruction not only gives the operational meaning of wavefunction, but also provides the possibility of realizing holographic imaging with a totally new quantum approach. Here, we review the basic background knowledge of weak value based direct wavefunction reconstruction combined with recent experimental demonstrations. The main purpose of this work focuses on the idea of holographic imaging via direct wavefunction reconstruction. Since research on this topic is still in its early stage, we hope that this work can attract interest in the field of traditional holographic imaging. In addition, the wavefunction holographic imaging may find important applications in quantum information science.
Keywords:  wavefunction reconstruction      weak value      hologram imaging  
Received:  11 April 2023      Revised:  24 May 2023      Accepted manuscript online:  25 May 2023
PACS:  03.67.-a (Quantum information)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Zhang Y S is supported by the National Natural Science Foundation of China (Grant Nos. 11674306 and 92065113) and the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2022-039).
Corresponding Authors:  Meng-Jun Hu, Yong-Sheng Zhang     E-mail:  humj@baqis.ac.cn;yshzhang@ustc.edu.cn

Cite this article: 

Meng-Jun Hu(胡孟军) and Yong-Sheng Zhang(张永生) Digital holographic imaging via direct quantum wavefunction reconstruction 2023 Chin. Phys. B 32 100312

[1] Dirac P A M 1958 The Principles of Quantum Mechanics (4nd edn.) (Clarendon, Oxford) pp. 1-18
[2] Fuchs C A and Schack R 2013 Rev. Mod. Phys. 85 1693
[3] Pusey M F, Barrett J and Rudolph T 2012 Nat. Phys. 8 475
[4] Ringbauer M, Duffus B, Branciard C, Cavalcanti E G, White A G and Fedrizzi A 2015 Nat. Phys. 11 249
[5] Dressel J, Malik M, Miatto F M, Jordan A N and Boyd R W 2014 Rev. Mod. Phys. 86 307
[6] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[7] Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188
[8] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[9] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299
[10] Cramer M, Plenio M B, Flammia S T, Somma R, Gross D, Bartlett S D, Landon-Cardinal O, Poulin D and Liu Y K 2010 Nat. Commun. 1 149
[11] Hosten O and Kwiat P 2008 Science 319 787
[12] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
[13] Harris J, Boyd R W and Lundeen J S 2017 Phys. Rev. Lett. 118 070802
[14] Jozsa R 2007 Phys. Rev. A 76 044103
[15] Hu M J 2022 arXiv:2212.06525[quant-ph]
[16] Vallone G and Dequal D 2016 Phys. Rev. Lett. 116 040502
[17] Zhang C R, Hu M J, Hou Z B, Tang J F, Zhu J, Xiang G Y, Li C F, Guo G C and Zhang Y S 2020 Phys. Rev. A 101 012119
[18] Zhang C R, Hu M J, Xiang G Y, Zhang Y S, Li C F and Guo G C 2020 Chin. Phys. Lett. 37 080301
[19] Zhang T and Yamaguchi I 1998 Opt. Lett. 23 1221
[20] Cuche E, Bevilacqua F and Depeursinge C 1999 Opt. Lett. 24 291
[21] Kakue T, Yonesaka R, Tahara T, Awatsuji Y, Nishio K, Ura S, Kubota T and Matoba O 2011 Opt. Lett. 36 4131
[22] Kraus K 1983 States, Effects and Operations (Berlin: Springer-Verlag) pp. 1-30
[23] Shi Z M, Mirhosseini M, Margiewicz J, Malik M, Rivera R, Zhu Z Y and Boyd R W 2015 Optica 2 388
[24] Javidi B, Carnicer A, Anand A, et al. 2021 Opt. Express 29 35078
[25] Kamilov U S, Papadopoulos I N, Shoreh M H, Goy A, Vonesch C, Unser M and Psaltis D 2016 IEEE Transactions on Comput. Imaging 2 59
[26] Zhou Y, Zhao J, Hay D, McGonagle K, Boyd R W and Shi Z 2021 Phys. Rev. Lett. 127 040402
[1] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[2] Effects of postselected von Neumann measurement on the properties of single-mode radiation fields
Yusuf Turek(玉素甫·吐拉克). Chin. Phys. B, 2020, 29(9): 090302.
[3] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
No Suggested Reading articles found!