|
|
Detection of healthy and pathological heartbeat dynamics in ECG signals using multivariate recurrence networks with multiple scale factors |
Lu Ma(马璐)1,2, Meihui Chen(陈梅辉)3, Aijun He(何爱军)4, Deqiang Cheng(程德强)1, and Xiaodong Yang(杨小冬)3,† |
1 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China; 2 Suzhou Vocational and Technical College, Suzhou 234000, China; 3 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China; 4 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China |
|
|
Abstract The electrocardiogram (ECG) is one of the physiological signals applied in medical clinics to determine health status. The physiological complexity of the cardiac system is related to age, disease, etc. For the investigation of the effects of age and cardiovascular disease on the cardiac system, we then construct multivariate recurrence networks with multiple scale factors from multivariate time series. We propose a new concept of cross-clustering coefficient entropy to construct a weighted network, and calculate the average weighted path length and the graph energy of the weighted network to quantitatively probe the topological properties. The obtained results suggest that these two network measures show distinct changes between different subjects. This is because, with aging or cardiovascular disease, a reduction in the conductivity or structural changes in the myocardium of the heart contributes to a reduction in the complexity of the cardiac system. Consequently, the complexity of the cardiac system is reduced. After that, the support vector machine (SVM) classifier is adopted to evaluate the performance of the proposed approach. Accuracy of 94.1% and 95.58% between healthy and myocardial infarction is achieved on two datasets. Therefore, this method can be adopted for the development of a noninvasive and low-cost clinical prognostic system to identify heart-related diseases and detect hidden state changes in the cardiac system.
|
Received: 14 September 2022
Revised: 04 January 2023
Accepted manuscript online: 18 January 2023
|
PACS:
|
05.10.-a
|
(Computational methods in statistical physics and nonlinear dynamics)
|
|
87.18.-h
|
(Biological complexity)
|
|
87.85.Ng
|
(Biological signal processing)
|
|
87.19.X-
|
(Diseases)
|
|
Fund: Project supported by the Xuzhou Key Research and Development Program (Social Development) (Grant No. KC21304) and the National Natural Science Foundation of China (Grant No. 61876186). |
Corresponding Authors:
Xiaodong Yang
E-mail: xyang@cumt.edu.cn
|
Cite this article:
Lu Ma(马璐), Meihui Chen(陈梅辉), Aijun He(何爱军), Deqiang Cheng(程德强), and Xiaodong Yang(杨小冬) Detection of healthy and pathological heartbeat dynamics in ECG signals using multivariate recurrence networks with multiple scale factors 2023 Chin. Phys. B 32 100501
|
[1] Zou Y, Donner R V, Marwan N, Donges J F and Kurths J 2019 Physics Reports 787 1 [2] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285 [3] Rosenstein M T, Collins J J and Luca C 1993 Phys D 65 117 [4] Deryaübeyli E 2010 Expert Syst. Appl. 37 1192 [5] Richman J S and Randall M J 2000 Am. J. Physiol.: Heart Circ. Physiol. 278 H2039 [6] Bandt C and Pompe B 2002 Phys. Rev. Lett. 88 174102 [7] Shannon and C E 2014 Bell Syst. Tech. J. 30 50 [8] Mishra A K and Raghav S 2010 Biomed. Signal Process. Control 5 114 [9] Burrough and P. A 1981 Nature 294 240 [10] Paumgartner D, Losa G A and Weibel E R 2011 J. Microsc. 121 51 [11] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47 [12] Zhang J and Small M 2006 Phys. Rev. Lett. 96 238701 [13] Zhang J, Luo X, Nakamura T, Sun J and Small M 2007 Phys. Rev. E 75 016218 [14] Xu X, Jie Z and Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601 [15] Lacasa L, Luque B, Ballesteros F, Luque J and Nuno J C 2008 Proc. Natil. Acad. Sci. USA 105 4972 [16] Marwan N, Romano M C, Thiel M and Kurths J 2007 Phys. Rep. 438 237 [17] Marwan N, Donges J F, Zou Y, Donner R V and Kurths J 2009 Phys. Lett. A 373 4246 [18] Sun X R, Small M, Zhao Y and Xue X P 2014 Chaos 24 024402 [19] Marwan N and Kurths J 2015 Chaos 25 097609 [20] Lekscha J and Donner R V 2020 NPGeo 27 261 [21] Kachhara S and Ambika G 2019 Europhys. Lett. 127 60004 [22] Ramírezávila G M, Gapelyuk A, Marwan N, Walther T, Stepan H, Kurths J and Wessel N 2013 Philos Trans. A Math. Phys. Eng. 371 20110623 [23] Subramaniyam N P and Hyttinen J 2014 Phys. Lett. A 378 3464 [24] Subramaniyam N P and Hyttinen J 2013 International IEEE/EMBS Conference on Neural Engineering 605 [25] Gao Z K, Zhang X W, Jin N D, Donner R V, Marwan N and Kurths J 2013 Europhys. Lett. 103 50004 [26] Gao Z K, Dang W D, Yang Y X and Cai Q 2017 Chaos 27 035809 [27] Feldhoff J H, Donner R V, Donges J F, Marwan N and Kurths J 2012 EGU General Assembly 14 EGU2012-5450 [28] Zhang N, Wei N and Li K 2020 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020 3788 [29] Kachhara S and Ambika G 2020 Chaos 30 123106 [30] Eroglu D, Marwan N, Stebich M and Kurths J 2018 Phys. Rev. E 97 012312 [31] Xu H, Wang M and Yang W 2020 Complexity 2020 5841609 [32] Takens F 1981 Detecting strange attractors in turbulence (Berlin Heidelberg: Springer) [33] Marwan N 2011 Int. J. Bifurc. Chaos 21 1003 [34] Matassini L, Kantz H, Holyst J and Hegger R 2002 Phys. Rev. E 65 021102 [35] Thiel M, Romano M C, Kurths J, Meucci R, Allaria E and Arecchi F T 2002 Physica D 171 138 [36] Marwan N, Carmen Romano M, Thiel M and Kurths J 2007 Phys. Rep. 438 237 [37] Schinkel S, Dimigen O and Marwan N 2008 Eur. Phys. J. Spec. Top. 164 45 [38] Kraemer K H, Donner R V, Heitzig J and Marwan N 2018 Chaos 28 085720 [39] Marwan N and Kurths J 2002 Phys. Lett. A 302 299 [40] Kraemer K H and Marwan N 2019 Phys. Lett. A 383 125977 [41] Barrat A, Barthelemy M, Pastor-Satorras R and Vespignani A 2004 Proc. Natl. Acad. Sci. USA 101 3747 [42] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175 [43] Balakrishnan R 2004 Linear Algebra Appl. 387 287 [44] Xu X J, Wu Z X and Wang Y 2005 Int. J. Mod. Phys. C 17 521 [45] Wang J, Ning X, Ma Q, Bian C and Chen Y 2005 Phys. Rev. E 71 062902 [46] Abboud S, Belhassen B, Miller H I, Sadeh D and Laniado S 1986 J. Electrocardiol. 19 371 [47] Leinveber P, Halamek J and Jurak P 2016 J. Electrocardiol. 49 902 [48] Garvey J L 2006 Emerg. Med. Clin. North Am. 24 209 [49] Kligfield P, Gettes L, Bailey J, Childers R, Deal B, Hancock E, Herpen G, Kors J, Macfarlane P, Mirvis D, Pahlm O, Rautaharju P and Wagner G 2007 Heart Rhythm 4 394 [50] Bailey J J, Berson A S, Garson A, Jr., Horan L G, Macfarlane P W, Mortara D W and Zywietz C 1990 Circulation 81 730 [51] Kossmann C E, Brody D A, Burch G E, Hecht H H, Johnston F D, Kay C, Lepeschkin E, Pipberger H V, Pipberger H V, Baule G, Berson A S, Briller S A, Geselowitz D B, Horan L G and Schmitt O H 1967 Circulation 35 583 [52] Goldberger A L, Amaral L A, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C K and Stanley H E 2000 Circulation 101 E215 [53] Costa M, Goldberger A L and Peng C K 2002 Phys. Rev. Lett. 89 068102 [54] Lipsitz L A and Goldberger A L 1992 JAMA 267 1806 [55] Vaillancourt D E, Sosnoff J J and Newell K M 2004 J. Appl. Physiol. 97 454 [56] Valenza G, Citi L and Barbieri R 2014 PLoS One 9 e105622 [57] Yang X, Wang Z, He A and Wang J 2020 Physica A 559 125021 [58] Yang M J 2005 Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005 4630 [59] Eriksson P, Wilhelmsen L and Rosengren A 2005 Eur. Heart J. 26 2300 [60] Dohare A K, Kumar V and Kumar R 2018 Appl. Soft Comput. 64 138 [61] Sadhukhan D, Pal S and Mitra M 2018 IEEE Trans. Instrum. Meas. 67 2303 [62] Liu J, Zhang C, Ristaniemi T and Cong F 2019 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019 1496 [63] Kayikcioglu İ, Akdeniz F, Köse C and Kayikcioglu T 2020 Comput. Electr. Eng. 84 106621 [64] Ma Z Y, Yang X D, He A J, Ma L and Wang J 2022 Acta Phys. Sin. 71 050501 (in Chinese) [65] Hammad M and Wang K 2017 Proceedings of the 2017 International Conference on Biometrics Engineering and Application pp. 39-44 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|