1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; 2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 3 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China; 4 Shanghai Tech Laboratory for Topological Physics, Shanghai 201210, China; 5 Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China; 6 Hefei National Laboratory, Hefei 230088, China
Abstract Owing to the unique electronic structure, kagome materials AV3Sb5 (A=K, Rb, Cs) provide a fertile platform of quantum phenomena such as the strongly correlated state and topological Dirac band. It is well known that RbV3Sb5 exhibits a 2×2 unconventional charge density wave (CDW) state at low temperature, and the mechanism is controversial. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we successfully manipulated the CDW state in the Sb plane of RbV3Sb5, and realized a new sqrt × modulation together with the ubiquitous 2×2 period in the CDW state of RbV3Sb5. This work provides a new understanding of the collective quantum ground states in the kagome materials.
(Surface states, band structure, electron density of states)
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400403), the National Natural Science Foundation of China (Grant Nos. 92165205, 11790311, and 11774149), and Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302800). Y F Guo acknowledges the support by the open project of Beijing National Laboratory for Condensed Matter Physics (Grant No. ZBJ2106110017) and the Double First-Class Initiative Fund of Shanghai Tech University.
Corresponding Authors:
Yanfeng Guo, Shao-Chun Li
E-mail: guoyf@shanghaitech.edu.cn;scli@nju.edu.cn
Cite this article:
Yu-Xin Meng(孟雨欣), Cheng-Long Xue(薛成龙), Li-Guo Dou(窦立国), Wei-Min Zhao(赵伟民), Qi-Wei Wang(汪琪玮), Yong-Jie Xu(徐永杰), Xiangqi Liu(刘祥麒), Wei Xia(夏威), Yanfeng Guo(郭艳峰), and Shao-Chun Li(李绍春) Manipulating charge density wave state in kagome compound RbV3Sb5 2023 Chin. Phys. B 32 096801
[1] Balents L 2010 Nature464 199 [2] Simeng Yan D A H and Steven R White 2011 Science332 1173 [3] Guo H M and Franz M 2009 Phys. Rev. B80 113102 [4] Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G and Comin R 2020 Nat. Mater.19 163 [5] Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S and Lei H 2018 Nat. Commun.9 3681 [6] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H and Hasan M Z 2019 Nat. Phys.15 443 [7] Yu S L and Li J X 2012 Phys. Rev. B85 144402 [8] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett.110 126405 [9] Kiesel M L and Thomale R 2012 Phys. Rev. B86 121105 [10] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B87 115135 [11] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature555 638 [12] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater.3 094407 [13] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett.125 247002 [14] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett.38 037403 [15] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M X, Wang Z Q, Balents L, Wilson S D and Zeljkovic I 2021 Nature599 216 [16] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater.20 1353 [17] Bai X C, Wu W F, Wang H Y, Quan Y M, Wang X, Zeng Z and Zou L J 2022 New J. Phys.24 123016 [18] Li H, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X11 031050 [19] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X11 031026 [20] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R and Wilson S D 2021 Phys. Rev. X11 041030 [21] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q and Gao H J 2021 Nature599 222 [22] Song Y, Ying T, Chen X, Han X, Wu X, Schnyder A P, Huang Y, Guo J G and Chen X 2021 Phys. Rev. Lett.127 237001 [23] Qian T, Christensen M H, Hu C W, Saha A, Andersen B M, Fernandes R M, Birol T and Ni N 2021 Phys. Rev. B104 144506 [24] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun.12 3645 [25] Wang Q, Kong P, Shi W, Pei C, Wen C, Gao L, Zhao Y, Yin Q, Wu Y and Li G 2021 Adv. Mater.33 2102813 [26] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett.127 217601 [27] Lin Y P and Nandkishore R M 2021 Phys. Rev. B104 045122 [28] Wang C, Liu S, Jeon H and Cho J H 2022 Phys. Rev. B105 045135 [29] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys.18 137 [30] Kang M, Fang S, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Di Sante D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys.18 301 [31] Wu S, Ortiz B R, Tan H, Wilson S D, Yan B, Birol T and Blumberg G 2022 Phys. Rev. B105 155106 [32] Ferrari F, Becca F and Valentí R 2022 Phys. Rev. B106 L081107 [33] Feng X, Jiang K, Wang Z and Hu J 2021 Sci. Bull.66 1384 [34] Wang Z W, Jiang Y X, Yin J X, Li Y K, Wang G Y, Huang H L, Shao S, Liu J J, Zhu P, Shumiya N, Hossain M S, Liu H X, Shi Y G, Duan J X, Li X, Chang G Q, Dai P C, Ye Z J, Xu G, Wang Y C, Zheng H, Jia J F, Hasan M Z and Yao Y G 2021 Phys. Rev. B104 075148 [35] Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H X, Shi Y G, Yin Q W, Le H C, Zhan S T, Chang G Q, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X, Guguchia Z, Wilson S D and Hasan M Z 2021 Phys. Rev. B104 035131 [36] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature604 59 [37] Li H, Zhao H, Ortiz B R, Park T, Ye M, Balents L, Wang Z, Wilson S D and Zeljkovic I 2022 Nat. Phys.18 265 [38] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B104 L041103 [39] Yang S Y, Wang Y J, Ortiz B R, Liu D F, Gayles J, Derunova E, Gonzalez-Hernandez R, Smejkal L, Chen Y L, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv.6 eabb6003 [40] Cho S, Ma H, Xia W, Yang Y, Liu Z, Huang Z, Jiang Z, Lu X, Liu J, Liu Z, Li J, Wang J, Liu Y, Jia J, Guo Y, Liu J and Shen D 2021 Phys. Rev. Lett.127 236401 [41] Kato T, Li Y, Kawakami T, Liu M, Nakayama K, Wang Z, Moriya A, Tanaka K, Takahashi T, Yao Y and Sato T 2022 Commun. Mater.3 30 [42] Zhou X X, Li Y K, Fan X W, Hao J H, Dai Y M, Wang Z W, Yao Y G and Wen H H 2021 Phys. Rev. B104 L041101 [43] Lou R, Fedorov A, Yin Q, Kuibarov A, Tu Z, Gong C, Schwier E F, Buchner B, Lei H and Borisenko S 2022 Phys. Rev. Lett.128 036402 [44] Tan H, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett.127 046401 [45] Xie Y, Li Y, Bourges P, Ivanov A, Ye Z, Yin J X, Hasan M Z, Luo A, Yao Y, Wang Z, Xu G and Dai P 2022 Phys. Rev. B105 L140501 [46] Luo H, Gao Q, Liu H, Gu Y, Wu D, Yi C, Jia J, Wu S, Luo X, Xu Y, Zhao L, Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z and Zhou X J 2022 Nat. Commun.13 273 [47] Wulferding D, Lee S, Choi Y, Yin Q, Tu Z, Gong C, Lei H, Yousuf S, Song J, Lee H, Park T and Choi K Y 2022 Phys. Rev. Res.4 023215 [48] Mertz T, Wunderlich P, Bhattacharyya S, Ferrari F and Valentí R 2022 npj Comput. Mater.8 66 [49] Feng X, Zhang Y, Jiang K and Hu J 2021 Phys. Rev. B104 165136 [50] Park T, Ye M and Balents L 2021 Phys. Rev. B104 035142 [51] Ferhat K and Ralko A 2014 Phys. Rev. B89 155141 [52] Yu J, Xu Z, Xiao K, Yuan Y, Yin Q, Hu Z, Gong C, Guo Y, Tu Z, Tang P, Lei H, Xue Q K and Li W 2022 Nano Lett.22 918 [53] Wang Z, Ma S, Zhang Y, Yang H, Zhao Z, Ou Y, Zhu Y, Ni S, Lu Z, Chen H, Jiang K, Yu L, Zhang Y, Dong X, Hu J, Gao H J and Zhao Z 2021 arXiv: 2104.05556v1 [54] Li Q Y, Lv Y Y, Xu Y J, Zhu L, Zhao W M, Chen Y and Li S C 2022 Chin. Phys. B31 066802 [55] Wen J, Rüegg A, Wang C C J and Fiete G A 2010 Phys. Rev. B82 075125 [56] Rüegg A and Fiete G A 2011 Phys. Rev. B83 165118 [57] O'Brien A, Pollmann F and Fulde P 2010 Phys. Rev. B81 235115 [58] Nishimoto S, Nakamura M, O'Brien A and Fulde P 2010 Phys. Rev. Lett.104 196401
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.