CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Adsorption structure of macrocyclic energetic molecule DOATF on Au(111) |
Xiao Chang(常霄)1, Li Huang(黄立)1,†, Yixuan Gao(高艺璇)1, Changjiang Yu(于长江)2, Yun Cao(曹云)1, Long Lv(吕龙)2, Xiao Lin(林晓)1, Shixuan Du(杜世萱)1, and Hong-Jun Gao(高鸿钧)1 |
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China |
|
|
Abstract Furazan macrocyclic compound 3,4:7,8:11,12:15,16-tetrafurazan-1,9-dioxazo-5,13- diazocyclohexadecane (DOATF) is an ideal energetic material with high heat of formation. Here, using scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM), we investigated the adsorption structure of DOATF molecules on Au(111) surface, which shows the four furanzan rings in the STM images and a bright protrusion off the center of the molecule in the nc-AFM images. Combined with density functional theory (DFT) calculations, we confirmed that the bright feature in the nc-AFM images is an N-O coordinate bond pointing upwards in one of the two azoxy groups; while the other N-O bond pointing towards the Au(111) surface. Our work contributes for a deeper understanding of the adsorption structure of macrocyclic compounds, which would promote the designing of DOATF-metal frameworks.
|
Received: 01 March 2023
Revised: 26 May 2023
Accepted manuscript online: 01 June 2023
|
PACS:
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
07.79.Cz
|
(Scanning tunneling microscopes)
|
|
Fund: Project supported by the National Key Research and Development Projects of China (Grant No. 2019YFA0308500), the National Natural Science Foundation of China (Grant No. 61888102), and the Funds from the Chinese Academy of Sciences (Grant Nos. XDB30000000 and YSBR-003). |
Corresponding Authors:
Li Huang
E-mail: lhuang@iphy.ac.cn
|
Cite this article:
Xiao Chang(常霄), Li Huang(黄立), Yixuan Gao(高艺璇), Changjiang Yu(于长江), Yun Cao(曹云), Long Lv(吕龙), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) Adsorption structure of macrocyclic energetic molecule DOATF on Au(111) 2023 Chin. Phys. B 32 096802
|
[1] Sheremetev A B, Kulagina V O and Ivanova E A 1996 J. Organ. Chem. 61 1510 [2] Sheremetev A B, Kharitonova O V, Mel'nikova T y M, Novikova T y S, Kuz'min V S and Khmel'nitskii L I 1996 Mendeleev Commun. 6 141 [3] Sheremetev A B, Mantseva E V, Dmitriev D E and Sirovskii F S 2002 Russ. Chem. B 51 659 [4] Suponitsky K Y, Lyssenko K A, Ananyev I V, Kozeev A M and Sheremetev A B 2014 Cryst. Growth Des. 14 4439 [5] Veauthier J M, Chavez D E, Tappan B C and Parrish D A 2010 Journal of Energetic Materials 28 229 [6] Wang X, Xu K, Sun Q, Wang B, Zhou C and Zhao F 2015 Propellants, Explosives, Pyrotechnics 40 9 [7] Sheremetev A B, Makhova N N and Friedrichsen W 2001 Advances in Heterocyclic Chemistry, Vol. 78, p. 65 (San Diego: Academic Press) [8] Suntsova M A and Dorofeeva O V 2017 Journal of Molecular Graphics and Modelling 72 220 [9] Zhang J, Zhou J, Bi F and Wang B 2020 Chin. Chem. Lett. 31 2375 [10] Xiaohong L, Ruizhou Z and Xianzhou Z 2013 Struct. Chem. 24 1193 [11] Zhang Q and Shreeve J N M 2014 Angewandte Chemie-International Edition 53 2540 [12] Gong L, Chen G, Liu Y, Wang T, Zhang J, Yi X and He P 2021 New Journal of Chemistry 45 22299 [13] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110 [14] Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie S G, Crommie M F and Fischer F R 2018 Nature 560 204 [15] Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Müllen K and Fasel R 2016 Nature 531 489 [16] Mieres-Perez J, Lucht K, Trosien I, Sander W, Sanchez-Garcia E and Morgenstern K 2021 J. Am. Chem. Soc. 143 4653 [17] Jiang L, Zhang B, Medard G, Seitsonen A P, Haag F, Allegretti F, Reichert J, Kuster B, Barth J V and Papageorgiou A C 2017 Chem. Sci. 8 8301 [18] Bakker A, Freitag M, Kolodzeiski E, Bellotti P, Timmer A, Ren J, Schulze Lammers B, Moock D, Roesky H W, Monig H, Amirjalayer S, Fuchs H and Glorius F 2020 Angew. Chem. Int. Ed. Engl. 59 13643 [19] Qi J, Gao Y X, Huang L, Lin X, Dong J J, Du S X and Gao H J 2019 Chin. Phys. B 28 066801 [20] Giessibl F J 2019 Rev. Sci. Instrum. 90 011101 [21] Bartels L, Meyer G and Rieder K H 1997 Appl. Phys. Lett. 71 213 [22] Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15 [23] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [25] Grimme S 2006 J. Comput. Chem. 27 1787 [26] Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelinek P 2014 Phys. Rev. B 90 085421 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|