Abstract We investigate the effects of nonlinear interactions on quantum diffusion in a quasi-periodic quantum kicked rotor system, featuring a non-Hermitian kicking potential. Remarkably, when the non-Hermitian driving strength is sufficiently strong, the energy diffusion follows a power law of time, characterized by an exponent that decreases monotonically with increasing the strength of nonlinear interactions. This demonstrates the emergence of super-ballistic diffusion (SBD). We find a distinct prethermalization stage in the time domain preceding the onset of SBD. The unique quantum diffusion phenomena observed in this chaotic system can be attributed to the decoherence effects generated by the interplay between nonlinear interactions and the non-Hermitian kicking potential.
Fund: Jian-Zheng Li is supported by the Science and Technology Research Program of Jiangxi Education Department (Grant No. GJJ190463) and the Doctoral Startup Fund of Jiangxi University of Science and Technology (Grant No. 205200100067). Wen-Lei Zhao is supported by the National Natural Science Foundation of China (Grant No. 12065009), the Natural Science Foundation of Jiangxi Province (Grant Nos. 20224ACB201006 and 20224BAB201023), and the Science and Technology Planning Project of Ganzhou City (Grant No. 202101095077).
Jian-Zheng Li(李建政), Guan-Ling Li(李观玲), and Wen-Lei Zhao(赵文垒) Super-ballistic diffusion in a quasi-periodic non-Hermitian driven system with nonlinear interaction 2023 Chin. Phys. B 32 096601
[1] Čadež T, Mondaini R and Sacramento P D Phys. Rev. B96 144301 [2] Russomanno A, Fava M and Fazio R 2021 Phys. Rev. B103 224301 [3] Zhao Q F, Müller C A and Gong J B 2014 Phys. Rev. E90 022921 [4] Duffy G J, Mellish A S, Challis K J and Wilson A C 2004 Phys. Rev. A70 041602(R) [5] Maurya S S, Kannan J B, Patel K, Dutta P, Biswas K, Mangaonkar J, Santhanam M S and Rapol U D 2022 Phys. Rev. E106 034207 [6] Zhao W L, Gong P K, Wang J Z and Wang Q 2020 Chin. Phys. B29 120302 [7] An F A, Meier E J and Gadway B 2017 Nat. Commun.8 325 [8] Kohlert T, Scherg S, Li X, Lüschen H P, Sarma S D, Bloch I and Aidelsburger M 2019 Phys. Rev. Lett.122 170403 [9] Lucioni E, Deissler B, Tanzi L, Roati G, Zaccanti M, Modugno M, Larcher M, Dalfovo F, Inguscio M and Modugno G 2011 Phys. Rev. Lett.106 230403 [10] Zhang Z, Tong P, Gong J and Li B 2012 Phys. Rev. Lett.108 070603 [11] Geraldi A, Laneve A, Bonavena L D, Sansoni L, Ferraz J, Fratalocchi A, Sciarrino F, CuevasÁ and Mataloni P 2019 Phys. Rev. Lett.123 140501 [12] Sharabi Y, Sheinfux H H, Sagi Y, Eisenstein G and Segev M 2018 Phys. Rev. Lett.121 233901 [13] Gholami E and Lashkami Z M 2017 Phys. Rev. E95 022216 [14] Shirley J H 1965 Phys. Rev.138 B979 [15] Bukov M, D'Alessio L and Polkovnikov A 2015 Adv. Phys.64 139 [16] Santhanam M S, Paul S and Kannan J B 2022 Phys. Rep.956 1 [17] Lima R and Shepelyansky D 1991 Phys. Rev. Lett.67 1377 [18] Fishman S, Grempel D R and Prange R E 1982 Phys. Rev. Lett.49 509 [19] Grempel D R, Prange R E and Fishman S 1984 Phys. Rev. A29 1639 [20] Casati G, Guarneri I and Shepelyansky D L 1989 Phys. Rev. Lett.62 345 [21] Lemarié G, Grémaud B and Delande D 2009 Europhys. Lett.87 37007 [22] Lemarié G, Lignier H, Delande D, Szriftgiser P and Garreau J C 2010 Phys. Rev. Lett.105 090601 [23] Davis K B, Mewes M O, Andrews M R, Druten N J V, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett.75 3969 [24] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys.71 463 [25] Reitter M, Näger J, Wintersperger K, Sträter C, Bloch I, Eckardt A and Schneider U 2017 Phys. Rev. Lett.119 200402 [26] Wang L W, Wen K, Liu F D, Li Y D, Wang P J, Huang L H, Chen L C, Han W, Meng Z M and Zhang J 2022 Chin. Phys. B31 103401 [27] Chabé J, Lemarié G, Grémaud B, Delande D, Szriftgiser P and Garreau J C 2008 Phys. Rev. Lett.101 255702 [28] White D H, Haase T A, Brown D J, Hoogerland M D, Najafabadi M S, Helm J L, Gies C, Schumayer D and Hutchinson D A W 2020 Nat. Commun.11 4942 [29] Cherroret N, Vermersch B, Garreau J C and Delande D 2014 Phys. Rev. Lett.112 170603 [30] Lellouch S, Rançon A, Biévre S D, Delande D and Garreau J C 2020 Phys. Rev. A101 043624 [31] Vermersch B, Delande D and Garreau J C 2020 Phys. Rev. A101 053625 [32] Ermann L and Shepelyansky D L 2014 J. Phys. A: Math. Theor.47 335101 [33] Zhang C W, Liu J, Raizen M G and Niu Q 2004 Phys. Rev. Lett.92 054101 [34] Toh J H S, McCormick K C, Tang X X, Su Y, Luo X W, Zhang C W and Gupta S 2022 Nat. Phys.18 1297 [35] Cao A, Sajjad R, Mas H, Simmons E Q, Tanlimco J L, Martinez E N, Shimasaki T, Kondakci H E, Galitski V and Weld D M 2022 Nat. Phys.18 1302 [36] Ashida Y, Gong Z P and Ueda M 2020 Adv. Phys.69 249 [37] Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge: Cambridge University Press) p. 1 [38] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J L, Alú A, Fan S and Qiu C W 2019 Science364 6436 [39] Ganainy R E, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys.14 11 [40] Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S, Kamp M, Schneider C, Höfling S, Yamamoto Y, Nori F, Kivshar Y. S, Truscott A. G, Dall R G and Ostrovskaya E A 2015 Nature526 554 [41] Keller C, Oberthaler M K, Abfalterer R, Bernet S, Schmiedmayer J and Zeilinger A 1997 Phys. Rev. Lett.79 3327 [42] Li J M, Harter A K, Liu J, Melo L D, Joglekar Y N and Luo L 2019 Nat. Commun.10 855 [43] Longhi S 2017 Phys. Rev. A95 012125 [44] Huang K Q, Wang J Z, Zhao W L and Liu J 2021 J. Phys.: Condens. Matter33 055402 [45] Huang K Q, Zhao W L and Li Z 2021 Phys. Rev. A104 052405 [46] Zhao W L, Zhou L W, Liu J, Tong P Q and Huang K Q 2020 Phys. Rev. A102 062213 [47] Gadway B, Reeves J, Krinner L and Schneble D 2013 Phys. Rev. Lett.110 190401 [48] Lemarié G, Chabé J, Szriftgiser P, Garreau J C, Grémaud B and Delande D 2009 Phys. Rev. A80 043626 [49] See appendix for the experimental realization of the quasi-periodic kicked rotor model with ultral-cold atoms. [50] Shepelyansky D L 1993 Phys. Rev. Lett.70 1787 [51] Pikovsky A S and Shepelyansky D L 2008 Phys. Rev. Lett.100 094101 [52] Wegner F 1980 Z. Phys. B36 209 [53] Liu T, Cheng S J, Zhang R, Ruan R R and Jiang H X 2022 Chin. Phys. B31 027101 [54] Rajak A, Dana I and Torre E G D 2019 Phys. Rev. B100 100302(R) [55] Kundu A, Rajak A and Nag T 2021 Phys. Rev. B104 075161 [56] Zhao W L, Wang J Z, Wang X H and Tong P Q 2019 Phys. Rev. E99 042201 [57] Li J Z, Zhao W L and Liu J 2023 Phys. Rev. A107 032208 [58] Oberthaler M K, Abfalterer R, Bernet S, Schmiedmayer J and Zeilinger A 1996 Phys. Rev. Lett.77 4980
Superfluid to Mott-insulator transition in a one-dimensional optical lattice Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.