Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 073701    DOI: 10.1088/1674-1056/ab90f9
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Tilt adjustment for a portable absolute atomic gravimeter

Hong-Tai Xie(谢宏泰)1,2,3, Bin Chen(陈斌)1,2,3, Jin-Bao Long(龙金宝)1,2,3, Chun Xue(薛春)4, Luo-Kan Chen(陈泺侃)1,2,3, Shuai Chen(陈帅)1,2,3
1 Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;
3 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China;
4 Shanghai Division, QuantumCTek Co., Ltd. Shanghai 201315, China
Abstract  For an atomic gravimeter, the measured value of the Earth's gravity acceleration g is the projection of the local gravity on the direction of Raman laser beams. To accurately measure the g, the Raman laser beams should be parallel to the g direction. We analyze the tilt effect of the Raman beams on g measurement and present a general method for the tilt adjustment. The systematic error caused by the tilt angle is evaluated as 0 (+0, -0.8) μGal (1 μGal=10 nm/s2) and the drift is also compensated in real time. Our method is especially suitable for the portable atomic gravimeter which focuses on the mobility and field applications.
Keywords:  atomic gravimeter      systematic error      tilt adjustment      stability  
Received:  19 February 2020      Revised:  30 April 2020      Accepted manuscript online: 
PACS:  37.25.+k (Atom interferometry techniques)  
  03.75.Dg (Atom and neutron interferometry)  
  06.20.-f (Metrology)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301601), the National Natural Science Foundation of China (Grant No. 11674301), Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY120000), and Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01).
Corresponding Authors:  Shuai Chen     E-mail:  shuai@ustc.edu.cn

Cite this article: 

Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅) Tilt adjustment for a portable absolute atomic gravimeter 2020 Chin. Phys. B 29 073701

[1] de N, Darrigol O and Schlaudt O 2019 The Reform of the International System of Units (SI) (London: Routledge) p. 131
[2] Marson I and Faller J E 1986 J. Phys. E: Sci. Instrum. 19 22
[3] Rice H, Kelmenson S and Mendelsohn L 2004 Proceedings of the IEEE Position Location and Navigation Symposium, April 26-29, 2004, Monterey, USA, pp. 618-624
[4] Prothero W A and Goodkind J M 1968 Rev. Sci. Instrum. 39 1257
[5] Riccardi U, Rosat S and Hinderer J 2011 Metrologia 48 28
[6] Okubo S, Yoshida S, Sato T, Tamura Y and Imanishi Y 1997 Geophys. Res. Lett. 24 489
[7] Liard J and Gagnon C 2002 Metrologia 39 477
[8] Li C J, Xu J Y, Feng J Y, Su D W and Wu S Q 2015 Proc. Volume 9446 Ninth International Symposium on Precision Engineering Measurement and Instrumentation, March 6, 2015, Changsha, China
[9] Kasevich M and Chu S 1991 Phys. Rev. Lett. 67 181
[10] Peters A, Chung K Y and Chu S 1999 Nature 400 849
[11] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[12] Gouet J L, Mehlstaubler T, Kim J, Merlet S, Clairon A, Landragin A and Santos F P D 2008 Appl. Phys. B 92 133
[13] Zhou L, Xiong Z Y, Yang W, Tang B, Peng W C, Wang Y B, Xu P, Wang J and Zhan M S 2019 Chin. Phys. B 28 013701
[14] Wang J 2015 Chin. Phys. B 24 053702
[15] Wang Q Y, Wang Z Y, Fu Z J and Lin Q 2016 Chin. Phys. B 25 123701
[16] Abend S, Gebbe M, Gersemann M, Ahlers H, Muntinga H, Giese E, Gaaloul N, Schubert C, Lammerzahl C, Ertmer W, Schleich W P and Rasel E M 2016 Phys. Rev. Lett. 117 203003
[17] Cheng Y, Tan Y J, Zhou M K, Duan X C, Shao C G, Hu Z K 2018 Chin. Phys. B 27 030303
[18] Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J and Zhan M S 2019 Metrologia 56 045012
[19] Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S and Muller H 2019 Sci. Adv. 5 eaax0800
[20] Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y and Li C J 2018 Metrologia 55 360
[21] Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z and Luo J 2013 Phys. Rev. A 88 043610
[22] Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J and Peters A 2016 J. Phys.: Conf. Ser. 723 012050
[23] Wu S, Feng J, Li C, Su D, Wang Q, Hu R, Hu L, Xu J, Ji W, Ullrich C et al. 2020 Metrologia 57 07002
[24] Altin P A, Johnsson M T, Negnevitsky V, Dennis G R, Anderson R P, Debs J E, Szigeti S S, Hardman K S, Bennetts S, Mcdonald G D, Turner L D, Close J D and Robins N P 2013 New J. Phys. 15 023009
[25] Senger A A mobile atom interferometer for high-precision measurements of local gravity (PhD Dissertation) (Berlin: Humboldt University), pp. 54-55
[26] Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M and Peters A 2013 Appl. Phys. B 113 49
[27] Menoret V, Vermeulen P, Moigne N L, Bonvalot S, Bouyer P, Landragin A and Desruelle B 2018 Sci. Rep. 8 12300
[28] Zhou M K, Luo Q, Chen L L, Duan X C and Hu Z K 2016 Phys. Rev. A 93 043610
[29] Trimeche A, Langlois M, Merlet S and Santos F P D 2017 Phys. Rev. Appl. 7 034016
[30] Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S and Santos F P D 2011 New J. Phys. 13 065025
[31] Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L and Lin Q 2018 Acta. Phys. Sin. 67 190302 (in Chinese)
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
No Suggested Reading articles found!