CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Design of sign-reversible Berry phase effect in 2D magneto-valley material |
Yue-Tong Han(韩曰通)†, Yu-Xian Yang(杨宇贤)†, Ping Li(李萍), and Chang-Wen Zhang(张昌文)‡ |
School of Physics and Technology, University of Jinan, Jinan 250022, China |
|
|
Abstract Manipulating sign-reversible Berry phase effects is both fundamentally intriguing and practically appealing for searching for exotic topological quantum states. However, the realization of multiple Berry phases in the magneto-valley lattice is rather challenging due to the complex interactions from spin-orbit coupling (SOC), band topology, and magnetic ordering. Here, taking single-layer spin-valley RuCl2 as an example, we find that sign-reversible Berry phase transitions from ferrovalley (FV) to half-valley semimetal (HVS) to quantum anomalous valley Hall effect (QAVHE) can be achieved via tuning electronic correlation effect or biaxial strains. Remarkably, QAVHE phase, which combines both the features of quantum anomalous Hall and anomalous Hall valley effect, is introduced by sign-reversible Berry curvature or band inversion of dxy/dx2-y2 and dz2 orbitals at only one of the K/K' valleys of single-layer RuCl2. And the boundary of QAVHE phase is the HVS state, which can achieve 100% intrinsically valley polarization. Further, a k·p model unveiled the valley-controllable sign-reversible Berry phase effects. These discoveries establish RuCl2 as a promising candidate to explore exotic quantum states at the confluence of nontrivial topology, electronic correlation, and valley degree of freedom.
|
Received: 06 December 2022
Revised: 09 May 2023
Accepted manuscript online: 26 May 2023
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.Dx
|
(Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), and the National Natural Science Founation of China (Grant No. 52173283). |
Corresponding Authors:
Chang-Wen Zhang
E-mail: ss_zhangchw@ujn.edu.cn
|
Cite this article:
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文) Design of sign-reversible Berry phase effect in 2D magneto-valley material 2023 Chin. Phys. B 32 097101
|
[1] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055 [2] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S von, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [3] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [4] Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale 15 6830 [5] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [6] Liu Y, Gao Y, Zhang S, He J, Yu J and Liu Z 2019 Nano Res. 12 2695 [7] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 [8] Eftekhari A and Mater 2017 J. Chem. A 5 18299 [9] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [10] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 Appl. Mater. Inter. 9 41443 [11] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101 [12] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802 [13] Ding J, Qiao Z, Feng W, Yao Y and Niu Q 2011 Phys. Rev. B 84 195444 [14] Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D and Xu X D 2013 Nat. Phys. 9 149 [15] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [16] Ye Z L, Sun D Z and Heinz T F 2017 Nat. Phys. 13 26 [17] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [18] Cheng Y C, Zhang Q Y and Schwingenschlögl U 2014 Phys. Rev. B 89 155429 [19] Peng R, Ma Y, Zhang S, Huang B and Dai Y 2018 J. Phys. Chem. Lett. 9 3612 [20] Singh N and Schwingenschlogl U 2017 Adv. Mater. 29 1600970 [21] Xu L, Yang M, Shen L, Zhou J, Zhu T and Feng Y P 2018 Phys. Rev. B 97 041405 [22] Wang B J, Sun Y Y, Chen J, Ju W W, An Y P and Gong S J 2021 J. Mater. Chem. C 9 3562 [23] Seyler K L, Zhong D, Huang D, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C and X Xu 2018 Nano Lett. 18 3823 [24] Cai T, Yang S A, Li X, Zhang F, Shi J, Yao W and Niu Q 2013 Phys. Rev. B 88 115140 [25] MacNeill D, Heikes C, Mak K F, Anderson Z, Kormanyos A, Zolyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401 [26] Zhang X X, Cao T, Lu Z, Lin Y C, Wang Y, Li Z, Hone J C, Robinson J A, Smirnov D, Louie S G and Heinz T F 2017 Nat. Nanotech. 12 883 [27] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis S and Imamouğlu A 2015 Nat. Phys. 11 141 [28] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612 [29] Luo C, Peng X, Qu J and Zhong J 2020 Phys. Rev. B 101 245416 [30] Zhao P, Ma Y, Lei C, Wang H, Huang B and Dai Y 2019 Appl. Phys. Lett. 115 261605 [31] Jiang P, Kang L, Li Y L, Zheng X, Zeng Z and Sanvito S 2021 Phys. Rev. B 104 035430 [32] Guo S D, Zhu J X, Mu W Q and Liu B G 2021 Phys. Rev. B 104 224428 [33] Sheng K, Chen Q, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 075304 [34] Li S, He J, Grajciar L and Nachtigall P 2021 J. Mater. Chem. C 9 11132 [35] Cui Q, Zhu Y, Liang J, Cui P and Yang H 2021 Phys. Rev. B 103 085421 [36] Zhou T, Zhang J, Jiang H, Žutić I and Yang Z 2018 npj Quantum Mater. 3 39 [37] Huan H, Xue Y, Zhao B, Gao G, Bao H and Yang Z 2021 Phys. Rev. B 104 165427 [38] Hu C S, Wu Y J, Liu Y S, Fu S, Cui X N, Wang Y H and Zhang C W 2022 Chin. Phys. B 32 037306 [39] Liu Y S, Sun H, Hu C S, Wu Y J and Zhang C W 2022 Chin. Phys. B 32 027101 [40] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433 [41] Guo S D, Mu W Q and Liu B G 2022 2$D Mater. 9 035011 [42] Zhang D, Li A, Chen X, Zhou W and Ouyang F 2022 Phys. Rev. B 105 085408 [43] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112 [44] Huan H, Xue Y, Zhao B, Guo G, Bao H and Yang Z 2021 Phys. Rev. B 104 165427 [45] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226 [46] Li S, Wang Q, Zhang C, Guo P and Yang S A 2021 Phys. Rev. B 104 085149 [47] Kresse G 1995 Journal of Non-Crystalline Solids 192-193 222 [48] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [49] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [50] Zhang L, Zhang S F, Ji W X, Zhang C W, Li P, Wang P J, Li S S and Yan S S 2018 Nanoscale 10 20748 [51] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [52] Liechtenstein A I, Anisimov V V and Zaanen J 1995 Phys. Rev. B 52 R5467 [53] Zhang Y, Lin L, Moreo A and Dagotto E 2022 Phys. Rev. B 105 085107 [54] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [55] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309 [56] López Sancho M P, López Sancho J M and Rubio J 1984 J. Phys. F 14 1205 [57] Cadelano E and Colombo L 2012 Phys. Rev. B 85 245434 [58] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [59] Huang B, Clark K, Navarromoratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, Mcguire M A and Cobden D H 2017 Nature 546 270 [60] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [61] Liu W R, Dong X J, Lv Y Z, Ji W X, Cao Q, Wang P J, Li F and Zhang C W 2022 Nanoscale 14 3632 [62] Xiang H J and Whangbo M H 2007 Phys. Rev. B 75 052407 [63] Gray A X, Jeong J, Aetukuri N P, Granitzka P, Chen Z, Kukreja R, Highley D, Chase T, Reid A H, Ohldag H, Marcus M A, Scholl A, Young A T, Doran A, Jenkins C A, Shafer P, Arenholz E, Samant M G, Parkin S S P and Dürr H A 2016 Phys. Rev. Lett. 116 116403 [64] Sorella S, Seki K, Brovko O O, Shirakawa T, Miyakoshi S, Yunoki S and Tosatti E 2018 Phys. Rev. Lett. 121 066402 [65] Leonov I, Skornyakov S L, Anisimov V I and Vollhardt D 2015 Phys. Rev. Lett. 115 106402 [66] Hu H, Tong W Y, Shen Y H, Wan X and Duan C G 2020 npj Comput. Mater. 6 129 [67] Ma Y T, Wan C H, Wang X, Yang W L, Guo C Y, Fang C,. Zhao M K, Dong J, Zhang Y and Han X F 2020 Phys. Rev. B 101 134417 [68] Thouless D J, Kohmoto M, Nightingale M P and Nijs M 1982 Phys. Rev. Lett. 49 405 [69] Zhou X, Zhang R W, Zhang Z, Feng W, Mokrousov Y and Yao Y 2021 npj Comput. Mater. 7 160 [70] Pan H, Li X, Jiang H, Yao Y and Yang S A 2015 Phys. Rev. B 91 045404 [71] Zhang M H, Chen X L, Ji W X, Wang P J, Min-Yuan M Y and Zhang C W 2020 Appl. Phys. Lett. 116 172105 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|