|
|
Epitaxial fabrication of monolayer copper arsenide on Cu(111) |
Shuai Zhang(张帅)1, Yang Song(宋洋)1, Jin Mei Li(李金梅)2, Zhenyu Wang(王振宇)1, Chen Liu(刘晨)2, Jia-Ou Wang(王嘉鸥)2, Lei Gao(高蕾)3, Jian-Chen Lu(卢建臣)3, Yu Yang Zhang(张余洋)1,4, Xiao Lin(林晓)1,4, Jinbo Pan(潘金波)1, Shi Xuan Du(杜世萱)1,4, Hong-Jun Gao(高鸿钧)1,4 |
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Kunming University of Science and Technology, Kunming 650500, China; 4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We report the epitaxial growth of monolayer copper arsenide (CuAs) with a honeycomb lattice on Cu(111) by molecular beam epitaxy (MBE). Scanning tunneling microscopy (STM), low energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) verify the √3×√3 superlattice of monolayer CuAs on Cu(111) substrate. Angle-resolved photoemission spectroscopy (ARPES) measurements together with DFT calculations demonstrate the electronic band structures of monolayer CuAs and reveal its metallic nature. Further calculations show that charge transfer from Cu(111) substrate to monolayer CuAs lifts the Fermi level and tunes the band structure of the monolayer CuAs. This high-quality epitaxial monolayer CuAs with potential tunable band gap holds promise on the applications in nano-electronic devices.
|
Received: 17 April 2020
Revised: 24 April 2020
Accepted manuscript online:
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
82.20.Wt
|
(Computational modeling; simulation)
|
|
Fund: Project supported by the National Key Research & Development Program of China (Grant Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61888102, 11604373, 61622116, and 51872284), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the University of Chinese Academy of Sciences. A portion of the research was performed in the CAS Key Laboratory of Vacuum Physics. |
Corresponding Authors:
Xiao Lin, Jinbo Pan, Hong-Jun Gao
E-mail: xlin@ucas.ac.cn;jbpan@iphy.ac.cn;jbpan@iphy.ac.cn
|
Cite this article:
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Epitaxial fabrication of monolayer copper arsenide on Cu(111) 2020 Chin. Phys. B 29 077301
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[3] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[4] |
Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotechnol. 5 574
|
[5] |
Das S, Kim M, Lee J W and Choi W 2014 Crit. Rev. Solid State Mater. Sci. 39 231
|
[6] |
Liu T, Tong L, Huang X and Ye L 2019 Chin. Phys. B 28 017302
|
[7] |
Lu N, Wang L, Li L and Liu M 2017 Chin. Phys. B 26 036804
|
[8] |
She Y C, Wei Z, Luo K W, Li Y, Zhang Y and Zhang W X 2018 Chin. Phys. B 27 060306
|
[9] |
Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F and Gao H J 2009 Adv. Mater. 21 2777
|
[10] |
Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[11] |
Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
|
[12] |
Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
|
[13] |
Deng J, Xia B, Ma X, Chen H, Shan H, Zhai X, Li B, Zhao A, Xu Y, Duan W, Zhang S C, Wang B and Hou J G 2018 Nat. Mater. 17 1081
|
[14] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[15] |
Li E, Zhang R Z, Li H, Liu C, Li G, Wang J O, Qian T, Ding H, Zhang Y Y, Du S X, Lin X and Gao H J 2018 Chin. Phys. B 27 086804
|
[16] |
Ji F, Ren X, Zheng X, Liu Y, Pang L, Jiang J and Liu S 2016 Nanoscale 8 8696
|
[17] |
Chen Y, Ye D, Wu M, Chen H, Zhang L, Shi J and Wang L 2014 Adv. Mater. 26 7019
|
[18] |
Ma Y, Liu B, Zhang A, Chen L, Fathi M, Shen C, Abbas A N, Ge M, Mecklenburg M and Zhou C 2015 ACS Nano 9 7383
|
[19] |
Sokolikova M S, Sherrell P C, Palczynski P, Bemmer V L and Mattevi C 2019 Nat. Commun. 10 712
|
[20] |
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
|
[21] |
Jiang S, Li L, Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
|
[22] |
Qian K, Gao L, Chen X, Li H, Zhang S, Zhang X L, Zhu S, Yan J, Bao D, Cao L, Shi J A, Lu J, Liu C, Wang J, Qian T, Ding H, Gu L, Zhou W, Zhang Y Y, Lin X, Du S, Ouyang M, Pantelides S T and Gao H J 2020 Adv. Mater. 32 1908314
|
[23] |
Lin X, Lu J C, Shao Y, Zhang Y Y, Wu X, Pan J B, Gao L, Zhu S Y, Qian K, Zhang Y F, Bao D L, Li L F, Wang Y Q, Liu Z L, Sun J T, Lei T, Liu C, Wang J O, Ibrahim K, Leonard D N, Zhou W, Guo H M, Wang Y L, Du S X, Pantelides S T and Gao H J 2017 Nat. Mater. 16 717
|
[24] |
Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S and Gao H J 2018 Adv. Mater. 30 1707055
|
[25] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[26] |
Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
|
[27] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[28] |
Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
|
[29] |
Wu D, Zhang Q and Tao M 2006 Phys. Rev. B 73 235206
|
[30] |
Powell C J 2012 J. Electron. Spectrosc. Relat. Phenom. 185 1
|
[31] |
Ghosh S C, Biesinger M C, LaPierre R R and Kruse P 2007 J. Appl. Phys. 101 114322
|
[32] |
Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano 11 1689
|
[33] |
Tusche C, Meyerheim H L and Kirschner J 2007 Phys. Rev. Lett. 99 026102
|
[34] |
Jiang Y, Sun Y Y, Chen M, Wang Y, Li Z, Song C, He K, Wang L, Chen X, Xue Q K, Ma X and Zhang S B 2012 Phys. Rev. Lett. 108 066809
|
[35] |
Gao L, Sun J T, Sethi G, Zhang Y Y, Du S and Liu F 2019 Nanoscale 11 22743
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|