|
|
Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer |
Yu Sun(孙宇)1, Chang-Wei Sun(孙昌伟)2, Wei Zhou(周唯)1, Ran Yang(杨然)1, Jia-Chen Duan(端家晨)1, Yan-Xiao Gong(龚彦晓)1, Ping Xu(徐平)3,†, and Shi-Ning Zhu(祝世宁)1 |
1. National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China; 2. NanZhi Institude of Advanced Optoelectronic Integration, Nanjing 210018, China; 3. Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract Combining a Ti-diffusion periodically poled lithium niobate (PPLN) waveguide with a Sagnac interferometer, two opposite directions type-II spontaneous parametric down conversions (SPDC) occur coherently and yield a high brightness, high stability polarization entanglement source. The source produces degenerate photon pairs at 1540.4 nm with a brightness of B = (1.36±0.03)×106 pairs/(s· nm·mW). We perform quantum state tomography to reconstruct the density matrix of the output state and obtain a fidelity of F=0.983±0.001. The high brightness and phase stability of our waveguide source enable a wide range of quantum information experiments operating at a low pump power as well as hold the advantage in mass production which can promote the practical applications of quantum technologies.
|
Received: 11 May 2023
Revised: 11 May 2023
Accepted manuscript online: 25 May 2023
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos.2022YFF0712800 and 2019YFA0308700). |
Corresponding Authors:
Ping Xu
E-mail: pingxu520@nju.edu.cn
|
Cite this article:
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁) Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer 2023 Chin. Phys. B 32 080308
|
[1] Ekert A K 1991 Phys. Rev. Lett. 67, 661 [2] Jennewein T, Simon C, Weihs G, Weinfurter H and Zeilinger A 2000 Phys. Rev. Lett. 84,4729 [3] Liu H Y, Tian X H, Gu C S, Fan P F, Ni X, Yang R, Zhang J N, Hu M Z, Guo J, Cao X, Hu X P, Zhao G, Lu Y Q, Gong Y X, Xie Z D and Zhu S N 2021 Phys. Rev. Lett. 126,020503 [4] Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li B, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C, Wang J Y and Pan J W 2021 Science 356,1140 [5] Daniel G and Isaac L C 1999 Nature 402, 390 [6] Knill E, Laflamme R and Milburn G J 2001 Nature 409, 46 [7] Alberto P, Jonathan C F M and Jeremy L O B 2009 Science 325 1221 [8] Jacob M, Nicholas C H, Gregory R S, Yoav L and Dirk E 2015 Phys. Rev. A 92 032322 [9] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [10] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641 [11] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y and Pan J W 2017 Nature 549 70 [12] Kwait P G, Mattle C, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y H 1995 Phys. Rev. Lett. 75 4337 [13] Ljunggren D, Tengner M, Marsden P and Pelton M 2006 Phys. Rev. A 73 032326 [14] Suhara T, Nakaya G, Kawashima J and Fujimura M 2009 IEEE Photonics Technology Letters 21 1096 [15] Thyagarajan K, Lugani J, Ghosh S, Sinha K, Martin A, Ostrowsky D B, Alibart O and Tanzilli S 2009 Phys. Rev. A 80 052321 [16] Sun C W, Wu S H, Duan J C, Zhou J W, Xia J L, Xu P, Xie Z D, Gong Y X and Zhun S N 2019 Opt. Lett. 44 5598 [17] Kuo P S, Verma V B and Nam S W 2020 OSA Continuum 3 15 [18] Yosshizawa A and Tsuchida H 2004 Appl. Phys. Lett. 85 2457 [19] König F, Mason E J, Wong F N C and Albota M A 2005 Phys. Rev. A 71 033805 [20] Clausen C, Bussiéres F, Tiranov A, Herrmann H, Silberhorn C, Sohler W, Afzelius M and Gisin N 2014 New J. Phys. 16 093058 [21] Sansoni L, Luo K H, Ricken R, Krapick S, Herrmann H and Silberhorn C 2017 npj Quantum Inf 3 5 [22] Shi B S and Tomita A 2004 Phys. Rev. A 69 013803 [23] Kim T, Fiorentino M and Wong F N C 2006 Phys. Rev. A 73 012316 [24] Fedrizzi A, Herbst T, Poppe A, Jennewein T and Zeilinger A 2007 Opt. Express 15 15377 [25] Medic M, Altepeter J B, Hall M A, Patel M and Kumar P 2010 Opt. Lett. 35 802 [26] Jabir M V and Samanta G K 2017 Sci. Rep. 7 12613 [27] Graham R and Haken H 1968 Z. Phys. 210 276 [28] Santandrea M, Stefszky M, Roeland G and Silberhorn 2019 New J. Phys. 21 123005 [29] Helmfrid S and Arvidsson G 1991 J. Opt. Soc. Am. B 8 797 [30] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880 [31] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|