Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080307    DOI: 10.1088/1674-1056/acd5c5
GENERAL Prev   Next  

Algorithm for evaluating distance-based entanglement measures

Yixuan Hu(胡奕轩)1, Ye-Chao Liu(刘烨超)2,1,†, and Jiangwei Shang(尚江伟)1,‡
1. Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2. Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Siegen 57068, Germany
Abstract  Quantifying entanglement in quantum systems is an important yet challenging task due to its NP-hard nature. In this work, we propose an efficient algorithm for evaluating distance-based entanglement measures. Our approach builds on Gilbert's algorithm for convex optimization, providing a reliable upper bound on the entanglement of a given arbitrary state. We demonstrate the effectiveness of our algorithm by applying it to various examples, such as calculating the squared Bures metric of entanglement as well as the relative entropy of entanglement for GHZ states, W states, Horodecki states, and chessboard states. These results demonstrate that our algorithm is a versatile and accurate tool that can quickly provide reliable upper bounds for entanglement measures.
Keywords:  quantum information      entanglement measurement      convex optimization  
Received:  31 March 2023      Revised:  09 May 2023      Accepted manuscript online:  16 May 2023
PACS:  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  02.60.Pn (Numerical optimization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12175014 and 92265115) and the National Key Research and Development Program of China (Grant No.2022YFA1404900). Y. C. Liu is also supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, project numbers 447948357 and 440958198) and the Sino-German Center for Research Promotion (Project M-0294).
Corresponding Authors:  Ye-Chao Liu, Jiangwei Shang     E-mail:  ye-chao.liu@uni-siegen.de;jiangwei.shang@bit.edu.cn

Cite this article: 

Yixuan Hu(胡奕轩), Ye-Chao Liu(刘烨超), and Jiangwei Shang(尚江伟) Algorithm for evaluating distance-based entanglement measures 2023 Chin. Phys. B 32 080307

[1] Horodecki M 2001 Quantum Inf. Comput. 1 3
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Peres A 1996 Phys. Rev. Lett. 77 1413
[4] Chen K and Wu L A 2003 Quantum Inf. Comput. 3 193
[5] Rudolph O 2005 Quantum Inf. Process. 4 219
[6] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[7] Terhal B M 2000 Phys. Lett. A 271 319
[8] Lewenstein M, Kraus B, Cirac J I and Horodecki P 2000 Phys. Rev. A 62 052310
[9] Bruβ D, Cirac J I, Horodecki P, Hulpke F, Kraus B, Lewenstein M and Sanpera A 2002 J. Mod. Opt. 49 1399
[10] Yu S and Liu N L 2005 Phys. Rev. Lett. 95 150504
[11] Gühne O, Mechler M, Tóth G and Adam P 2006 Phys. Rev. A 74 010301
[12] Spedalieri F M 2007 Phys. Rev. A 76 032318
[13] Navascués M, Owari M and Plenio M B 2009 Phys. Rev. Lett. 103 160404
[14] Kampermann H, Gühne O, Wilmott C and Bruβ D 2012 Phys. Rev. A 86 032307
[15] Gilbert E G 1966 SIAM J. Control Optim. 4 61
[16] Brierley S, Navascues M and Vertesi T 2017 arXiv: 1609.05011
[17] Shang J and Gühne O 2018 Phys. Rev. Lett. 120 050506
[18] Wieśniak M, Pandya P, Sakarya O and Woloncewicz B 2020 Quantum Rep. 2 49
[19] Pandya P, Sakarya O and Wieśniak M 2020 Phys. Rev. A 102 012409
[20] Plenio M B and Virmani S 2007 Quantum Inf. Comput. 7 1
[21] Uhlmann A 1998 Open Sys. Inf. Dyn. 5 209
[22] Vidal G, Jonathan D and Nielsen M A 2000 Phys. Rev. A 62 012304
[23] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[24] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[25] Gurvits L and Barnum H 2003 Phys. Rev. A 68 042312
[26] Gharibian S 2010 Quantum Inf. Comput. 10 343
[27] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[28] Acín A, Bruβ D, Lewenstein M and Sanpera A 2001 Phys. Rev. Lett. 87 040401
[29] Schumacher B and Westmoreland M D 2000 arXiv: quant-ph/0004045[quant-ph]
[30] Vedral V 2002 Rev. Mod. Phys. 74 197
[31] Brandão F G S L and Plenio M B 2008 Nat. Phys. 4 873
[32] Chen Z H, Ma Z H, Gühne O and Severini S S 2012 Phys. Rev. Lett. 109 200503
[33] Horodecki P 1997 Phys. Lett. A 232 333
[34] Bruβ D and Peres A 2000 Phys. Rev. A 61 030301
[1] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[2] One-shot detection limits of time-alignment two-photon illumination radar
Wen-Long Gao(高文珑), Lu-Ping Xu(许录平), Hua Zhang(张华), Bo Yan(阎博), Peng-Xian Li(李芃鲜), and Gui-Ting Hu(胡桂廷). Chin. Phys. B, 2023, 32(5): 050304.
[3] Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements
Yuyu Chen(陈玉玉), Fenzhuo Guo(郭奋卓), Shihui Wei(魏士慧), and Qiaoyan Wen(温巧燕). Chin. Phys. B, 2023, 32(4): 040309.
[4] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[5] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[6] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[7] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[8] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[9] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[10] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[11] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[12] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[13] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[14] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[15] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
No Suggested Reading articles found!