Abstract We creatively employ the shadow radius to study the thermodynamics of a charged AdS black hole with a nonlinear electrodynamics (NLED) term. First, the connection between the shadow radius and event horizon is constructed with the aid of the geodesic analysis. It turns out that the black hole shadow radius shows a positive correlation as a function of the event horizon radius. Then in the shadow context, we find that the black hole temperature and heat capacity can be presented by the shadow radius. Further analysis shows that the shadow radius can work similarly to the event horizon in revealing black hole phase transition process. In this sense, we construct the thermal profile of the charged AdS black hole with inclusion of the NLED effect. In the P<Pc case, it is found that the N-type trend of the temperature given by the shadow radius is always consistent with that obtained by using the event horizon. Thus, we can conclude for the charged AdS black hole that the phase transition process can be intuitively presented as the thermal profile in the shadow context. Finally, the effects of NLED are carefully analyzed.
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.11903025), the Starting Fund of China West Normal University (Grant No.18Q062), the Sichuan Youth Science and Technology Innovation Research Team (Grant No.21CXTD0038), the Chongqing Science and Technology Bureau (Grant No.csts2022ycjh-bgzxm0161), and the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1833).
Corresponding Authors:
Guo-Ping Li
E-mail: gpliphys@yeah.net
Cite this article:
He-Bin Zheng(郑何斌), Ping-Hui Mou(牟平辉), Yun-Xian Chen(陈芸仙), and Guo-Ping Li(李国平) Shadow thermodynamics of AdS black hole with the nonlinear electrodynamics term 2023 Chin. Phys. B 32 080401
[1] Abbott B P et al. (LIGO Scientific, Virgo) 2016 Phys. Rev. Lett.116 061102 [2] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett.875 L1 [3] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett.875 L2 [4] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett.875 L3 [5] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett.875 L4 [6] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett.875 L5 [7] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett.875 L6 [8] Bozza V 2010 Gen. Rel. Grav.42 2269 [9] Perlick V and Tsupko O Y 2022 Phys. Rep.947 1 [10] Synge J L 1966 Mon. Not. R. Astron. Soc.131 463 [11] Bardeen J M, Press W H and Teukolsky S A 1972 Astrophys. J.178 347 [12] Broderick A E, Pesce D W, Gold R, et al. 2022 Astrophys. J.935 61 [13] Wang H M and Wei S W 2022 Eur. Phys. J. Plus137 571 [14] Shao W W, Cheng P, Zhong Y and Zhou X N 2015 J. Cosmol. Astropart. Phys.08 004 [15] Shao W W, Zou Y C, Liu Y X and Mann R B 2019 J. Cosmol. Astropart. Phys.08 030 [16] Chen S B, Wang M Z and Jing J L 2020 J. High Energy Phys.07 054 [17] Zeng X X, Zhang H Q and Zhang H B 2020 Eur. Phys. J. C80 872 [18] Zeng X X and Zhang H Q 2020 Eur. Phys. J. C80 1058 [19] Peng J, Guo M Y and Feng X H 2021 Phys. Rev. D104 124010 [20] Li G P and He K J 2021 J. Cosmol. Astropart. Phys.06 037 [21] Zhou X, Chen S B and Jing J L 2022 Sci. China Phys. Mech. Astron.65 250411 [22] Zeng X X, He K J and Li G P 2022 Sci. China Phys. Mech. Astron.65 290411 [23] Li G P and He K J 2021 Eur. Phys. J. C81 1018 [24] Gan Q Y, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D104 024003 [25] Gan Q Y, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D104 044049 [26] Hou Y H, Liu P, Guo M Y, Yan H P and Chen B 2022 Class. Quant. Grav.39 194001 [27] Guo W D, Wei S W and Liu Y X 2022 arXiv: 2203.13477 [gr-qc] [28] Wang H M, Lin Z C and Wei S W 2022 Nucl. Phys. B985 116026 [29] Hou Y H, Zhang Z Y, Yan H P, Guo M Y and Chen B 2022 Phys. Rev. D106 064058 [30] Qin X, Chen S B, Zhang Z L and Jing J L 2022 Astrophys. J.938 2 [31] Chen Y Q, Guo G Z, Wang P, Wu H W and Yang H T 2022 Sci. China Phys. Mech. Astron.65 120412 [32] Hawking S W 1975 Commun. Math. Phys.43 199 [33] Kubizňók D and Mann R B 2012 J. High Energy Phys.07 033 [34] Cai R G, Cao L M, Li L and Yang R Q 2013 J. High Energy Phys.9 1 [35] He K J, Hu X Y and Zeng X X 2019 Chin. Phys. C43 125101 [36] Ökcü Ö and Aydiner E 2017 Eur. Phys. J. C77 24 [37] Guo S, Han Y and Li G P 2020 Class. Quant. Grav.37 085016 [38] Guo S, Huang Y L, He K J and Li G P 2021 Mod. Phys. Lett. A36 2150108 [39] Wei S W, Wang Y Q, Liu Y X and Mann R B N 2021 Sci. China Phys. Mech. Astron.64 270411 [40] Zhang M and Guo M Y 2020 Eur. Phys. J. C80 790 [41] Belhaj A, Chakhchi L, E1 Moumni H, Khalloufi J and Masmar K 2020 Int. J. Mod. Phys. A35 2050170 [42] Chamblin A, Emparan R, Johnson C V and Myers R C 1999 Phys. Rev. D60 064018 [43] Gunasekaran S, Kubiznak D and Mann R B 2012 J. High Energy Phys.11 110 [44] Belhaj A, Chabab M, E1 Moumni H and Sedra M B 2012 Chin. Phys. Lett.29 100401 [45] Hendi S H and Vahidinia M H 2013 Phys. Rev. D88 084045 [46] Liu Y Q, Zou D C and Wang B 2014 J. High Energy Phys.09 179 [47] Wei S W and Liu Y X 2015 Phys. Rev. Lett.115 111302 [48] Zhang J L, Cai R G and Yu H W 2015 Phys. Rev. D91 044028 [49] Belhaj A, Chabab M, Moumni H E1, Masmar K, Sedra M B and Segui A 2015 J. High Energy Phys.05 149 [50] Chabab M, E1 Moumni H and Masmar K 2016 Eur. Phys. J. C76 304 [51] Chabab M, E1 Moumni H, Iraoui S and Masmar K 2016 Eur. Phys. J. C76 676 [52] Zou D C, Liu Y Q and Yue R H 2017 Eur. Phys. J. C77 365 [53] Wei S W and Liu Y X 2018 Phys. Rev. D97 104027 [54] Chabab M, E1 Moumni H, Iraoui S, Masmar K and Zhizeh S 2018 Phys. Lett. B781 316 [55] Perlick V, Tsupko O Y and Bisnovatyi-Kogan G S 2018 Phys. Rev. D97 104062 [56] Zhang M, Yue R H and Yang Z Y 2015 Chin. Phys. Lett.32 20401 [57] Ma M S and Zhao R 2015 Chin. Phys. Lett.32 30401 [58] Singh T I 2015 Chin. Phys. B24 070401 [59] Ye B B, Chen J H and Wang Y J 2017 Chin. Phys. B26 090202 [60] Hu X Y, He K J, Li Z H and Li G P 2020 Chin. Phys. B29 050401 [61] Guo S, Li G R and Li G P 2022 Chin. Phys. C46 095101 [62] Novello M, De Lorenci V A, Salim J M and Klippert R 2000 Phys. Rev. D61 045001 [63] Allahyari A, Khodadi M, Vagnozzi S and Mota D F 2020 J. Cosmol. Astropart. Phys.02 003 [64] Zeng X X, He K J, Li G P, Liang E W and Guo S 2022 Eur. Phys. J. C82 764 [65] Yu S and Gao C J 2020 Int. J. Mod. Phys. D29 2050032 [66] De Lorenci V A, Klippert R, Novello M and Salim J M 2000 Phys. Lett. B482 134 [67] Kruglov S I 2020 Mod. Phys. Lett. A35 2050291 [68] Cai X C and Miao Y G 2021 arXiv:2107.08352 [gr-qc] [69] Wang C, Wu B, Xu Z M and Yang W L 2022 Nucl. Phys. B976 115698 [70] Eiroa E F and Sendra C M 2018 Eur. Phys. J. C78 91
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.