Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 075211    DOI: 10.1088/1674-1056/acd2b0
Special Issue: SPECIAL TOPIC — Plasma disruption
SPECIAL TOPIC—Plasma disruption Prev   Next  

Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest

Wenhui Hu(胡文慧)1, Jilei Hou(侯吉磊)1,†, Zhengping Luo(罗正平)1, Yao Huang(黄耀)1, Dalong Chen(陈大龙)1, Bingjia Xiao(肖炳甲)1,2, Qiping Yuan(袁旗平)1, Yanmin Duan(段艳敏)1, Jiansheng Hu(胡建生)1,3, Guizhong Zuo(左桂忠)1, and Jiangang Li(李建刚)1
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science&Technology of China, Hefei 230026, China;
3 Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Multifaceted asymmetric radiation from the edge (MARFE) movement which can cause density limit disruption is often encountered during high density operation on many tokamaks. Therefore, identifying and predicting MARFE movement is meaningful to mitigate or avoid density limit disruption for the steady-state high-density plasma operation. A machine learning method named random forest (RF) has been used to predict the MARFE movement based on the density ramp-up experiment in the 2022's first campaign of Experimental Advanced Superconducting Tokamak (EAST). The RF model shows that besides Greenwald fraction which is the ratio of plasma density and Greenwald density limit, d$\beta_{\rm p}/$d$ t$, $H_{98}$ and d $W_{\rm mhd}/$d$t$ are relatively important parameters for MARFE-movement prediction. Applying the RF model on test discharges, the test results show that the successful alarm rate for MARFE movement causing density limit disruption reaches $\sim 85%$ with a minimum alarm time of $\sim 40 $ ms and mean alarm time of $\sim 700 $ ms. At the same time, the false alarm rate for non-disruptive and non-density-limit disruptive discharges can be kept below 5%. These results provide a reference to the prediction of MARFE movement in high density plasmas, which can help the avoidance or mitigation of density limit disruption in future fusion reactors.
Keywords:  multifaceted asymmetric radiation from the edge (MARFE) movement prediction      random forest      machine learning      Experimental Advanced Superconducting Tokamak (EAST)  
Received:  30 December 2022      Revised:  04 April 2023      Accepted manuscript online:  05 May 2023
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  28.52.-s (Fusion reactors)  
  84.35.+i (Neural networks)  
Fund: This work is supported by the National MCF Energy R&D Program of China (Grant Nos. 2018YFE0302100 and 2019YFE03010003), the National Natural Science Foundation of China (Grant Nos. 12005264, 12105322, and 12075285), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2022YFE03100003), the Natural Science Foundation of Anhui Province of China (Grant No. 2108085QA38), the Chinese Postdoctoral Science Found (Grant No. 2021000278), and the Presidential Foundation of Hefei institutes of Physical Science (Grant No. YZJJ2021QN12).
Corresponding Authors:  Jilei Hou     E-mail:  jlhou@ipp.ac.cn

Cite this article: 

Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚) Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest 2023 Chin. Phys. B 32 075211

[1] Connor J W and You S 2001 Plasma Phys. Control. Fusion 44 121
[2] ITER Physics Expert Group on Disruptions, Plasma Control, MHD and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2251
[3] Wesson J A, Gill R D, Hugon M, et al. 1989 Nucl. Fusion 29 641
[4] Stabler A, McCormick K, Mertens V, Muller E R, Neuhauser J, Niedermeyer H, Steuer K H, Zohm H, Dollinger F, Eberhagen A, Fussmann G, Gehre O, Gernhardt J, Hartinger T, Hofmann J V, Kakoulidis E, Kaufmann M, Kyriakakis G, Lang R S, Murmann H D, Poschenrieder W, Ryter F, Sandmann W, Schneider U, Siller G, Soldner F X, Tsois N, Vollmer O and Wagner F 1992 Nucl. Fusion 32 1557
[5] Hosogane N, Asakura N, Kubo H, Itami K, Sakasai A, Shimizu K, Nakamura H, Shimada M, Neyatani Y and Yoshino R 1992 J. Nucl. Mater. 196-198 750
[6] Samm U, Brix M, Durodié F, Lehnen M, Pospieszczyk A, Rapp J, Sergienko G, Schweer B, Tokar M Z and Unterberg B 1999 J. Nucl. Mater. 266-269 666
[7] Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27
[8] Schuller F C 1995 Plasma Phys. Control. Fusion 37 A135
[9] Shi P, Zhuang G, Gentle K, Hu Q, Chen J, Li Q, Liu Y, Gao L, Zhang X, Liu H, Chen Z, Zhu L, Li F, Zhou Y, Zeng Z, Liu L and He J 2017 Nucl. Fusion 57 116052
[10] Zheng X, Li J, Hu J, Liu H, Jie Y, Wang S, Li J, Duan Y, Li M, Li Y, Zhang L, Ye Y, Yang Q, Zhang T, Cheng Y, Xu J, Wang L, Xu L, Zhao H, Wang F, Lin S, Wu B, Lyu B, Xu G, Gao X, Shi T, He K, Lan H, Chu N, Cao B, Sun Z, Zuo G, Ren J, Zhuang H, Li C, Yuan X, Yu Y, Wang H, Chen Y and Wu J 2016 Plasma Phys. Control. Fusion 58 55013
[11] Sen A K 1993 Phys. Fluids B: Plasma Phys. 5 3997
[12] de Vries P C, Rapp J, Schüller F C and Tokar M Z 1998 Phys. Rev. Lett. 80 3519
[13] Dachicourt R, Monier-Garbet P, Gil C, Guirlet R, Tamain P, Meyer O, Devynck P, Pégourié B, Clairet F, Bucalossi J, Corre Y and Ségui J L 2013 J. Nucl. Mater. 438 S334
[14] Gao X, Zhao Y P, Luo J R, et al. 1999 Plasma Phys. Control. Fusion 41 1349
[15] Gao X, Xie J K, Wan Y X, Ushigusa K, Wan B N, Zhang S Y, Li J and Kuang G L 2001 Phys. Rev. E 65 017401
[16] Stroth U, Bernert M, Brida D, Cavedon M, Dux R, Huett E, Lunt T, Pan O, Wischmeier M and ASDEX Upgrade Team 2022 Nucl. Fusion 62 076008
[17] Arena P, Basile A, De Angelis R, Fortuna L, Mazzitelli G, Migliori S, Vagliasindi G and Zammataro M 2005 IEEE Trans. Plasma Sci. 33 1106
[18] Vagliasindi G, Murari A, Arena P, Fortuna L and Mazzitelli G 2009 IEEE Trans. Instrum. Meas. 58 2417
[19] Murari A, Camplani M, Cannas B, Mazon D, Delaunay F, Usai P and Delmond J F 2010 IEEE Trans. Plasma Sci. 38 3409
[20] Portes de A M, Portes de A M, Chacon G T, de Faria E L and Murari A 2012 IEEE Trans. Plasma Sci. 40 3485
[21] Portes de A M, Murari A, Giovani M, Alves N and Portes de A M 2013 IEEE Trans. Plasma Sci. 41 341
[22] Mazzotta C, Spizzo G, Pucella G, Giovannozzi E, Tudisco O, Apruzzese G, Bin W and Esposito B 2017 Nucl. Mater. Energy 12 808
[23] Stacey W M 2007 Fusion Sci. Technol. 52 29
[24] Marchuk O, Tokar M Z and Kelly F A 2006 Contrib. Plasma Phys. 46 744
[25] Chen X P and Shi B R 1999 Commun. Theor. Phys. 31 625
[26] Nishitani T, Ishida S, Hosogane N, Sugie T, Itami K and Takeuchi H 1990 J. Nucl. Mater. 176-177 763
[27] Hou J, Chen Y, Zuo G, Hu J, Mao S, Yuan X, Huang J, Wu M, Xu L, Zhao H, Yuan J, Wang S, Liu H, Meng L, Shi T, Li P and Li J 2022 Plasma Phys. Control. Fusion 64 055010
[28] Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Nature 568 526
[29] Vega J, Murari A, Dormido-Canto S, et al. 2022 Nat. Phys. 18 741
[30] Sammuli B S, Barr J L and Humphreys D A 2021 Fusion Eng. Des. 169 112492
[31] Olofsson K E J, Humphreys D A and Haye R J L 2018 Plasma Phys. Control. Fusion 60 084002
[32] Pucella G, Buratti P, Giovannozzi E, Alessi E, Auriemma F, Brunetti D, Ferreira D R, Baruzzo M, Frigione D, Garzotti L, Joffrin E, Lerche E, Lomas P J, Nowak S, Piron L, Rimini F, Sozzi C, Van Eester D and JET Contributors 2021 Nucl. Fusion 61 046020
[33] Fu Y, Eldon D, Erickson K, Kleijwegt K, Lupin-Jimenez L, Boyer M D, Eidietis N, Barbour N, Izacard O and Kolemen E 2020 Phys. Plasmas 27 022501
[34] Piccione A, Berkery J W, Sabbagh S A and Andreopoulos Y 2022 Nucl. Fusion 62 036002
[35] Rea C, Montes K J, Erickson K G, Granetz R S and Tinguely R A 2019 Nucl. Fusion 59 096016
[36] Rea C and Granetz R S 2018 Fusion Sci. Technol. 74 89
[37] Montes K J, Rea C, Granetz R S, Tinguely R A, Eidietis N, Meneghini O M, Chen D L, Shen B, Xiao B J, Erickson K and Boyer M D 2019 Nucl. Fusion 59 096015
[38] Hu W, Rea C, Yuan Q P, Erickson K, Chen D, Shen B, Huang Y, Xiao J, Chen J, Duan Y, Zhang Y, Zhuang H, Xu J, Montes K J, Granetz R, Zeng L, Qian J, Xiao B and Li J 2021 Nucl. Fusion 61 066034
[39] Mohapatra D, Subudhi B and Daniel R 2020 Fusion Eng. Des. 151 111401
[40] Zhong Y, Zheng W, Chen Z Y, Xia F, Yu L M, Wu Q Q, Ai X K, Shen C S, Yang Z Y, Yan W, Ding Y H, Liang Y F, Chen Z P, Tong R H, Bai W, Fang J G and Li F 2021 Plasma Phys. Control. Fusion 63 075008
[41] Rea C, Montes K J, Pau A, Granetz R S and Sauter O 2020 Fusion Sci. Technol. 76 912
[42] Altman N and Krzywinski M 2017 Nat. Methods 14 933
[43] Breiman L 2001 Mach. Learn. 45 5
[44] Palczewska A, Palczewski J and Robinson R M 2014 Integr. Reusable Syst. 193
[45] Zheng W, Hu F R, Zhang M, Chen Z Y, Zhao X Q, Wang X L, Shi P, Zhang X L, Zhang X Q, Zhou Y N, Wei Y N and Pan Y 2018 Nucl. Fusion 58 056016
[46] Guo B H, Shen B, Chen D L, Rea C, Granetz R S, Huang Y, Zeng L, Zhang H, Qian J P, Sun Y W and Xiao B J 2021 Plasma Phys. Control. Fusion 63 025008
[47] Zhu J X, Rea C, Granetz R S, Marmar E S, Montes K J, Sweeney R, Tinguely R A, Chen D L, Shen B, Xiao B J, Humphreys D, Barr J and Meneghini O 2021 Nucl. Fusion 61 114005
[48] Yang Z, Xia F, Song X, Gao Z, Huang Y and Wang S 2020 Nucl. Fusion 60 016017
[49] Yang Z, Xia F, Song X, Gao Z, Wang S and Dong Y 2021 Nucl. Fusion 61 126042
[1] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[2] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[3] Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生). Chin. Phys. B, 2023, 32(7): 075207.
[4] Generalization properties of restricted Boltzmann machine for short-range order
M A Timirgazin and A K Arzhnikov. Chin. Phys. B, 2023, 32(6): 067401.
[5] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[6] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[7] Reconstruction and stability of Fe3O4(001) surface: An investigation based on particle swarm optimization and machine learning
Hongsheng Liu(柳洪盛), Yuanyuan Zhao(赵圆圆), Shi Qiu(邱实), Jijun Zhao(赵纪军), and Junfeng Gao(高峻峰). Chin. Phys. B, 2023, 32(5): 056802.
[8] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[9] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[10] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[11] Forecasting solar still performance from conventional weather data variation by machine learning method
Wenjie Gao(高文杰), Leshan Shen(沈乐山), Senshan Sun(孙森山), Guilong Peng(彭桂龙), Zhen Shen(申震), Yunpeng Wang(王云鹏), AbdAllah Wagih Kandeal, Zhouyang Luo(骆周扬), A. E. Kabeel, Jianqun Zhang(张坚群), Hua Bao(鲍华), and Nuo Yang(杨诺). Chin. Phys. B, 2023, 32(4): 048801.
[12] Fast prediction of the mechanical response for layered pavement under instantaneous large impact based on random forest regression
Ming-Jun Li(励明君), Lina Yang(杨哩娜), Deng Wang(王登), Si-Yi Wang(王斯艺), Jing-Nan Tang(唐静楠), Yi Jiang(姜毅), and Jie Chen(陈杰). Chin. Phys. B, 2023, 32(4): 046203.
[13] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
No Suggested Reading articles found!