Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067401    DOI: 10.1088/1674-1056/ac989c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Generalization properties of restricted Boltzmann machine for short-range order

M A Timirgazin and A K Arzhnikov
Udmurt Federal Research Center, Ural Branch of RAS, Izhevsk 426067, Russia
Abstract  A biased sampling algorithm for the restricted Boltzmann machine (RBM) is proposed, which allows generating configurations with a conserved quantity. To validate the method, a study of the short-range order in binary alloys with positive and negative exchange interactions is carried out. The network is trained on the data collected by Monte-Carlo simulations for a simple Ising-like binary alloy model and used to calculate the Warren-Cowley short-range order parameter and other thermodynamic properties. We demonstrate that the proposed method allows us not only to correctly reproduce the order parameters for the alloy concentration at which the network was trained, but can also predict them for any other concentrations.
Keywords:  machine learning      short-range order      Ising model      restricted Boltzmann machine  
Received:  27 July 2022      Revised:  20 September 2022      Accepted manuscript online:  10 October 2022
PACS:  74.70.Ad (Metals; alloys and binary compounds)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
Corresponding Authors:  M A Timirgazin     E-mail:  timirgazin@gmail.com

Cite this article: 

M A Timirgazin and A K Arzhnikov Generalization properties of restricted Boltzmann machine for short-range order 2023 Chin. Phys. B 32 067401

[1] Wang L2016 Phys. Rev. B 94 195105
[2] Carrasquilla J and Melko R G2017 Nat. Phys. 13 431
[3] Hu W, Singh R R P and Scalettar R T2017 Phys. Rev. E 95 062122
[4] Shiina K, Mori H, Okabe Y and Lee H K2020 Scientific Reports 10 2177
[5] Wetzel S J2017 Phys. Rev. E 96 022140
[6] Ch'ng K, Carrasquilla J, Melko R G and Khatami E2017 Phys. Rev. X 7 031038
[7] Westerhout T, Astrakhantsev N, Tikhonov K S, Katsnelson M I and Bagrov A2020 Nat. Commun. 11 1593
[8] Noé F, Tkatchenko A, Müller K R and Clementi C2020 Annual Review of Physical Chemistry 71 361
[9] Smith J S, Isayev O and Roitberg A E2017 Chem. Sci. 8 3192
[10] Liu J, Qi Y, Meng Z Y and Fu L2017 Phys. Rev. B 95 041101
[11] Huang L and Wang L2017 Phys. Rev. B 95 035105
[12] Shen H, Liu J and Fu L2018 Phys. Rev. B 97 205140
[13] Yu W, Liu Y, Chen Y, Jiang Y and Chen J Z Y2019 The Journal of Chemical Physics 151 031101
[14] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L and Zdeborová L2019 Rev. Mod. Phys. 91 045002
[15] Mehta P, Bukov M, Wang C H, Day A G, Richardson C, Fisher C K and Schwab D J2019 Physics Reports 810 1
[16] Ackley D H, Hinton G E and Sejnowski T J1985 Cognitive Science 9 147
[17] Stratonovich R L 1957 Soviet Physics Doklady 2 416
[18] Groshev A and Arzhnikov A2020 Journal of Experimental and Theoretical Physics 130 247
[19] Rrapaj E and Roggero A2021 Phys. Rev. E 103 013302
[20] Torlai G and Melko R G2016 Phys. Rev. B 94 165134
[21] Nomura Y, Darmawan A S, Yamaji Y and Imada M2017 Phys. Rev. B 96 205152
[22] Vieijra T, Casert C, Nys J, De Neve W, Haegeman J, Ryckebusch J and Verstraete F2020 Phys. Rev. Lett. 124 097201
[23] Carleo G and Troyer M2017 Science 355 602
[24] Hinton G E, Osindero S and Teh Y W2006 Neural Comput. 18 1527
[25] Morningstar A and Melko R G 2017 J. Mach. Learn. Res. 18 5975 ISSN 1532-4435
[26] Azizi A and Pleimling M2021 Scientific Reports 11 1
[27] Ziman J and Ziman P1979 Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge University Press) ISBN 9780521217842
[28] Binder K, Lebowitz J L, Phani M K and Kalos M H1981 Acta Metallurgica 29 1655
[29] Arzhnikov A, Bagrets A and Bagrets D1996 J. Magn. Magn. Mater. 153 195
[30] Müller M and Albe K2005 Phys. Rev. B 72 094203
[31] Cowley J M1950 Phys. Rev. 77 669
[32] Warren B E 1969 X-ray Diffraction (Addison-Wesley, Reading, MA)
[33] Scholten P D1985 Phys. Rev. B 32 345
[34] Newman M and Barkema G1999 Monte Carlo Methods in Statistical Physics (Clarendon Press)
[35] Kawasaki K1966 Phys. Rev. 145 224
[36] Baxter R1982 Exactly Solved Models in Statistical Mechanics (Academic Press)
[37] Binder K and Landau D P1980 Phys. Rev. B 21 1941
[38] Lourenço B J and Dickman R2016 J. Stat. Mech.: Theo. Exper. 2016 033107
[39] Arzhnikov A K, Dobysheva L V, Konygin G N, Voronina E V and Yelsukov E P2001 Phys. Rev. B 65 024419
[40] Kozak R, Sologubenko A and Steurer W2015 Zeitschrift für Kristallographie-Crystalline Materials 230 55
[41] Steurer W2020 Materials Characterization 162 110179
[42] Smolensky P 1986 Parallel Distributed Process 1
[43] Hinton G E2002 Neural Computation 14 1771
[44] Hinton G E2012 A Practical Guide to Training Restricted Boltzmann Machines (Berlin, Heidelberg: Springer) pp. 599-619
[45] Hyvärinen A2006 Neural Computation 18 2283
[46] Schönfeld B, Sax C R, Zemp J, Engelke M, Boesecke P, Kresse T, Boll T, Al-Kassab T, Peil O E and Ruban A V2019 Phys. Rev. B 99 014206
[1] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[2] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[3] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[4] Reconstruction and stability of Fe3O4(001) surface: An investigation based on particle swarm optimization and machine learning
Hongsheng Liu(柳洪盛), Yuanyuan Zhao(赵圆圆), Shi Qiu(邱实), Jijun Zhao(赵纪军), and Junfeng Gao(高峻峰). Chin. Phys. B, 2023, 32(5): 056802.
[5] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[6] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[7] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[8] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[9] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[10] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[11] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[14] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!