1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2 Yangtze Memory Technologies Co., Ltd., Wuhan 430074, China; 3 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; 4 Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung-Plasmaphysik, Jülich 52425, Germany
Abstract In the experiments of actively triggering plasma disruption by massive gas injection, the externally applied resonant magnetic perturbation has been used to mitigate the hazard of runaway electron (RE). Motivated by the experiment of multimode coupling to suppress REs on J-TEXT, some typical simulation cases with non-ideal MHD with rotation-open discussion (NIMROD) code are carried out to explore the influential mechanism of different relative phases between m/n = 2/1 and m/n = 3/1 magnetic islands on the confinement of REs. Results show that the RE confinement is drastically affected by the relative phase between 2/1 and 3/1 magnetic islands. When the O point phase of 2/1 and 3/1 magnetic islands is toroidal 330°, REs can be effectively lost. The fitting curve of the remaining ratio of REs vs. the relative toroidal phase is predicted to approximate a sine-like function dependence. Further studies indicate that the phase difference between coexisting 2/1 and 3/1 islands can affect the radial transport of impurities. The loss of runaway electrons is closely related to the deposition effect of impurity. The impurity is easier to spread into the core region with smaller poloidal phase difference between the radial velocity of impurity and the impurity quantity of Ar.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175078 and 51821005). The authors are very grateful for the assistance of the NIMROD team.
Jin-Yu Xiong(熊金玉), Zhong-He Jiang(江中和), Zi-Xiao Jiao(焦子啸), Zhen Li(李振),Yun-Feng Liang(梁云峰), Zhong-Yong Chen(陈忠勇), Yong-Hua Ding(丁永华), and J-TEXT Team Effect of the relative phase between pre-existing 2/1 and 3/1 magnetic islands on the suppression of runaway electrons on J-TEXT 2023 Chin. Phys. B 32 075210
[1] Hender T C, Wesley J C, Bialek J, Bondeson A, Boozer A H, Buttery R J, Garofalo A, Goodman T P, Granetz R S and Gribov Y 2007 Nucl. Fusion47 S128 [2] Wesson J A, Gill R D, Hugon M, Schüller F C, Snipes J A, Ward D J, Bartlett D V and Campbell D J 1989 Nucl. Fusion29 641 [3] Arnoux G, Loarte A and Riccardo V 2009 Nucl. Fusion49 085038 [4] Lehnen M, Aleynikova K, Aleynikov P B, Campbell D J, Drewelow P, Eidietis N W, Gasparyan Y, Granetz R S, Gribov Y and Hartmann N 2015 J. Nucl. Mater.463 39 [5] Matthews G F 2016 Phys. ScriptaT167 014070 [6] Riccardo V and JET EFDA contributors 2003 Plasma Phys. Control. Fusion45 A269 [7] Baylor L R, Barbier C C, Carmichael J R, Combs S K, Ericson M N and Bull N D E 2017 Fusion Sci. Technol.68 211 [8] Rosenbluth M N and Putvinski S V 1997 Nucl. Fusion37 1355 [9] Taylor P L, Kellman A G, Evans T E, Gray D S, Humphreys D A, Hyatt A W, Jernigan T C and Lee R L 1999 Phys. Plasmas6 1872 [10] Commaux N, Baylor L R, Jernigan T C, Hollmann E M, Parks P B, Humphreys D A, Wesley J C and Yu J H 2010 Nucl. Fusion50 112001 [11] Pautasso G, Fuchs C J, Gruber O, Maggi C F, Maraschek M, Pütterich T, Rohde V, Wittmann C, Wolfrum E, Cierpka P and Beck M 2007 Nucl. Fusion47 023 [12] Commaux N, Shiraki D, Baylor L R, Hollmann E M, Eidietis N W and Lasnier C J 2016 Nucl. Fusion56 046007 [13] Reux C, Bucalossi J, Saint-Laurent F, Gil C, Moreau P and Maget P 2010 Nucl. Fusion50 095006 [14] Pautasso G, Mlynek A, Bernert M, Mank K, Herrmann A, Dux R, Müller H W, Scarabosio A and Sertoli M 2015 Nucl. Fusion55 033015 [15] Bozhenkov S A, Lehnen M, Finken K H, Jakubowski M W, Wolf R C, Jaspers R, Kantor M, Marchuk O V, Uzgel E and Wassenhove G V 2008 Plasma Phys. Control. Fusion50 105007 [16] Shiraki D, Commaux N, Baylor L R, Eidietis N W, Hollmann E M, Izzo V A, Moyer R A and Paz-Soldan C 2015 Nucl. Fusion55 073029 [17] Chen Z Y, Huang D W, Luo Y H, Tang Y, Dong Y B, Zeng L, Tong R H, Wang S Y, Wei Y N and Wang X H 2016 Nucl. Fusion56 112013 [18] Hollmann E M, Baylor L R, Jernigan T C, Hollmann E M, Humphreys D A, Wesley J C and Izzo V A 2010 Phys. Plasmas17 056117 [19] Tokuda S and Yoshino R 1999 Nucl. Fusion39 1123 [20] Papp G, Drevlak M, Fülöp T, Helander P and Pokol G I 2011 Plasma Phys. Control. Fusion53 095004 [21] Commaux N, Baylor L R, Combs S K, Eidietis N W, Evans T E, Foust C R, Hollmann E M, Humphreys D A and Izzo V A 2011 Nucl. Fusion51 103001 [22] Lehnen M, Bozhenkov S A, Abdullaev S S, TEXTOR Team and Jakubowski M W 2008 Phys. Rev. Lett.100 255003 [23] Yoshino R and Tokuda S 2000 Nucl. Fusion40 1293 [24] Gobbin M, Li L, Liu Y Q, Marrelli L, Nocente M, Papp G, Pautasso G, Piovesan P, Valisa M and Carnevale D 2018 Plasma Phys. Control. Fusion60 014036 [25] Chen Z Y, Huang D W, Izzo V A, Tong R H, Jiang Z H, Hu Q M, Wei Y N, Yan W, Rao B and Wang S Y 2016 Nucl. Fusion56 074001 [26] Lin Z F, Chen Z Y, Huang D W, Huang J, Tong R H, Wei Y N, Yan W, Li D, Hu Q M and Huang Y 2019 Plasma Phys. Control. Fusion61 024005 [27] Lin Z F and Chen Z Y 2019 Annual Report IFPP [28] Jiang Z H, Huang J, Tong R H, Yang T T, Lin Z F, Izzo V, Li C H and Liang Y F 2019 Phys. Plasmas26 062508 [29] Sovinec C R, Schnack D D, Pankin A Y, Brennan D P, Tian H, Barnes D C, Kruger S E, Held E D, Kim C C, Li X S, Kaushik D K, Jardin S C and the NIMROD Team 2005 J. Phys.16 25 [30] Izzo V A, Whyte D G, Granetz R S, Parks P B, Hollmann E M, Lao L L and Wesley J C 2008 Phys. Plasmas15 056109 [31] Izzo V A, Hollmann E M, James A N, Yu J H, Humphreys D A, Lao L L and Parks P B 2011 Nucl. Fusion51 063032 [32] Izzo V A and Parks P B 2017 Phys. Plasmas24 056102 [33] Jiang Z H, Yang T T, Yuan J J, Li C H, Ye X, Huang J, Liang Y and Izzo V A 2020 Nucl. Fusion60 066004
AC operation and runaway electron behaviour in HT-7 tokamak Lu Hong-Wei(卢洪伟), Hu Li-Qun(胡立群), Zhou Rui-Jie(周瑞杰), Lin Shi-Yao(林士耀), Zhong Guo-Qiang(钟国强), Wang Shao-Feng(王少锋), Chen Kai-Yun(陈开云), Xu Ping(许平), Zhang Ji-Zong(张继宗) Ling Bi-Li(凌必利), Mao Song-Tao(毛松涛), Duan Yan-Min(段艳敏), and HT-7 Team. Chin. Phys. B, 2010, 19(6): 065201.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.