Special Issue:
SPECIAL TOPIC — Plasma disruption
|
SPECIAL TOPIC—Plasma disruption |
Prev
Next
|
|
|
Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest |
Wenhui Hu(胡文慧)1, Jilei Hou(侯吉磊)1,†, Zhengping Luo(罗正平)1, Yao Huang(黄耀)1, Dalong Chen(陈大龙)1, Bingjia Xiao(肖炳甲)1,2, Qiping Yuan(袁旗平)1, Yanmin Duan(段艳敏)1, Jiansheng Hu(胡建生)1,3, Guizhong Zuo(左桂忠)1, and Jiangang Li(李建刚)1 |
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science&Technology of China, Hefei 230026, China; 3 Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract Multifaceted asymmetric radiation from the edge (MARFE) movement which can cause density limit disruption is often encountered during high density operation on many tokamaks. Therefore, identifying and predicting MARFE movement is meaningful to mitigate or avoid density limit disruption for the steady-state high-density plasma operation. A machine learning method named random forest (RF) has been used to predict the MARFE movement based on the density ramp-up experiment in the 2022's first campaign of Experimental Advanced Superconducting Tokamak (EAST). The RF model shows that besides Greenwald fraction which is the ratio of plasma density and Greenwald density limit, d$\beta_{\rm p}/$d$ t$, $H_{98}$ and d $W_{\rm mhd}/$d$t$ are relatively important parameters for MARFE-movement prediction. Applying the RF model on test discharges, the test results show that the successful alarm rate for MARFE movement causing density limit disruption reaches $\sim 85%$ with a minimum alarm time of $\sim 40 $ ms and mean alarm time of $\sim 700 $ ms. At the same time, the false alarm rate for non-disruptive and non-density-limit disruptive discharges can be kept below 5%. These results provide a reference to the prediction of MARFE movement in high density plasmas, which can help the avoidance or mitigation of density limit disruption in future fusion reactors.
|
Received: 30 December 2022
Revised: 04 April 2023
Accepted manuscript online: 05 May 2023
|
PACS:
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
28.52.-s
|
(Fusion reactors)
|
|
84.35.+i
|
(Neural networks)
|
|
Fund: This work is supported by the National MCF Energy R&D Program of China (Grant Nos. 2018YFE0302100 and 2019YFE03010003), the National Natural Science Foundation of China (Grant Nos. 12005264, 12105322, and 12075285), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2022YFE03100003), the Natural Science Foundation of Anhui Province of China (Grant No. 2108085QA38), the Chinese Postdoctoral Science Found (Grant No. 2021000278), and the Presidential Foundation of Hefei institutes of Physical Science (Grant No. YZJJ2021QN12). |
Corresponding Authors:
Jilei Hou
E-mail: jlhou@ipp.ac.cn
|
Cite this article:
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚) Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest 2023 Chin. Phys. B 32 075211
|
[1] Connor J W and You S 2001 Plasma Phys. Control. Fusion 44 121 [2] ITER Physics Expert Group on Disruptions, Plasma Control, MHD and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2251 [3] Wesson J A, Gill R D, Hugon M, et al. 1989 Nucl. Fusion 29 641 [4] Stabler A, McCormick K, Mertens V, Muller E R, Neuhauser J, Niedermeyer H, Steuer K H, Zohm H, Dollinger F, Eberhagen A, Fussmann G, Gehre O, Gernhardt J, Hartinger T, Hofmann J V, Kakoulidis E, Kaufmann M, Kyriakakis G, Lang R S, Murmann H D, Poschenrieder W, Ryter F, Sandmann W, Schneider U, Siller G, Soldner F X, Tsois N, Vollmer O and Wagner F 1992 Nucl. Fusion 32 1557 [5] Hosogane N, Asakura N, Kubo H, Itami K, Sakasai A, Shimizu K, Nakamura H, Shimada M, Neyatani Y and Yoshino R 1992 J. Nucl. Mater. 196-198 750 [6] Samm U, Brix M, Durodié F, Lehnen M, Pospieszczyk A, Rapp J, Sergienko G, Schweer B, Tokar M Z and Unterberg B 1999 J. Nucl. Mater. 266-269 666 [7] Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27 [8] Schuller F C 1995 Plasma Phys. Control. Fusion 37 A135 [9] Shi P, Zhuang G, Gentle K, Hu Q, Chen J, Li Q, Liu Y, Gao L, Zhang X, Liu H, Chen Z, Zhu L, Li F, Zhou Y, Zeng Z, Liu L and He J 2017 Nucl. Fusion 57 116052 [10] Zheng X, Li J, Hu J, Liu H, Jie Y, Wang S, Li J, Duan Y, Li M, Li Y, Zhang L, Ye Y, Yang Q, Zhang T, Cheng Y, Xu J, Wang L, Xu L, Zhao H, Wang F, Lin S, Wu B, Lyu B, Xu G, Gao X, Shi T, He K, Lan H, Chu N, Cao B, Sun Z, Zuo G, Ren J, Zhuang H, Li C, Yuan X, Yu Y, Wang H, Chen Y and Wu J 2016 Plasma Phys. Control. Fusion 58 55013 [11] Sen A K 1993 Phys. Fluids B: Plasma Phys. 5 3997 [12] de Vries P C, Rapp J, Schüller F C and Tokar M Z 1998 Phys. Rev. Lett. 80 3519 [13] Dachicourt R, Monier-Garbet P, Gil C, Guirlet R, Tamain P, Meyer O, Devynck P, Pégourié B, Clairet F, Bucalossi J, Corre Y and Ségui J L 2013 J. Nucl. Mater. 438 S334 [14] Gao X, Zhao Y P, Luo J R, et al. 1999 Plasma Phys. Control. Fusion 41 1349 [15] Gao X, Xie J K, Wan Y X, Ushigusa K, Wan B N, Zhang S Y, Li J and Kuang G L 2001 Phys. Rev. E 65 017401 [16] Stroth U, Bernert M, Brida D, Cavedon M, Dux R, Huett E, Lunt T, Pan O, Wischmeier M and ASDEX Upgrade Team 2022 Nucl. Fusion 62 076008 [17] Arena P, Basile A, De Angelis R, Fortuna L, Mazzitelli G, Migliori S, Vagliasindi G and Zammataro M 2005 IEEE Trans. Plasma Sci. 33 1106 [18] Vagliasindi G, Murari A, Arena P, Fortuna L and Mazzitelli G 2009 IEEE Trans. Instrum. Meas. 58 2417 [19] Murari A, Camplani M, Cannas B, Mazon D, Delaunay F, Usai P and Delmond J F 2010 IEEE Trans. Plasma Sci. 38 3409 [20] Portes de A M, Portes de A M, Chacon G T, de Faria E L and Murari A 2012 IEEE Trans. Plasma Sci. 40 3485 [21] Portes de A M, Murari A, Giovani M, Alves N and Portes de A M 2013 IEEE Trans. Plasma Sci. 41 341 [22] Mazzotta C, Spizzo G, Pucella G, Giovannozzi E, Tudisco O, Apruzzese G, Bin W and Esposito B 2017 Nucl. Mater. Energy 12 808 [23] Stacey W M 2007 Fusion Sci. Technol. 52 29 [24] Marchuk O, Tokar M Z and Kelly F A 2006 Contrib. Plasma Phys. 46 744 [25] Chen X P and Shi B R 1999 Commun. Theor. Phys. 31 625 [26] Nishitani T, Ishida S, Hosogane N, Sugie T, Itami K and Takeuchi H 1990 J. Nucl. Mater. 176-177 763 [27] Hou J, Chen Y, Zuo G, Hu J, Mao S, Yuan X, Huang J, Wu M, Xu L, Zhao H, Yuan J, Wang S, Liu H, Meng L, Shi T, Li P and Li J 2022 Plasma Phys. Control. Fusion 64 055010 [28] Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Nature 568 526 [29] Vega J, Murari A, Dormido-Canto S, et al. 2022 Nat. Phys. 18 741 [30] Sammuli B S, Barr J L and Humphreys D A 2021 Fusion Eng. Des. 169 112492 [31] Olofsson K E J, Humphreys D A and Haye R J L 2018 Plasma Phys. Control. Fusion 60 084002 [32] Pucella G, Buratti P, Giovannozzi E, Alessi E, Auriemma F, Brunetti D, Ferreira D R, Baruzzo M, Frigione D, Garzotti L, Joffrin E, Lerche E, Lomas P J, Nowak S, Piron L, Rimini F, Sozzi C, Van Eester D and JET Contributors 2021 Nucl. Fusion 61 046020 [33] Fu Y, Eldon D, Erickson K, Kleijwegt K, Lupin-Jimenez L, Boyer M D, Eidietis N, Barbour N, Izacard O and Kolemen E 2020 Phys. Plasmas 27 022501 [34] Piccione A, Berkery J W, Sabbagh S A and Andreopoulos Y 2022 Nucl. Fusion 62 036002 [35] Rea C, Montes K J, Erickson K G, Granetz R S and Tinguely R A 2019 Nucl. Fusion 59 096016 [36] Rea C and Granetz R S 2018 Fusion Sci. Technol. 74 89 [37] Montes K J, Rea C, Granetz R S, Tinguely R A, Eidietis N, Meneghini O M, Chen D L, Shen B, Xiao B J, Erickson K and Boyer M D 2019 Nucl. Fusion 59 096015 [38] Hu W, Rea C, Yuan Q P, Erickson K, Chen D, Shen B, Huang Y, Xiao J, Chen J, Duan Y, Zhang Y, Zhuang H, Xu J, Montes K J, Granetz R, Zeng L, Qian J, Xiao B and Li J 2021 Nucl. Fusion 61 066034 [39] Mohapatra D, Subudhi B and Daniel R 2020 Fusion Eng. Des. 151 111401 [40] Zhong Y, Zheng W, Chen Z Y, Xia F, Yu L M, Wu Q Q, Ai X K, Shen C S, Yang Z Y, Yan W, Ding Y H, Liang Y F, Chen Z P, Tong R H, Bai W, Fang J G and Li F 2021 Plasma Phys. Control. Fusion 63 075008 [41] Rea C, Montes K J, Pau A, Granetz R S and Sauter O 2020 Fusion Sci. Technol. 76 912 [42] Altman N and Krzywinski M 2017 Nat. Methods 14 933 [43] Breiman L 2001 Mach. Learn. 45 5 [44] Palczewska A, Palczewski J and Robinson R M 2014 Integr. Reusable Syst. 193 [45] Zheng W, Hu F R, Zhang M, Chen Z Y, Zhao X Q, Wang X L, Shi P, Zhang X L, Zhang X Q, Zhou Y N, Wei Y N and Pan Y 2018 Nucl. Fusion 58 056016 [46] Guo B H, Shen B, Chen D L, Rea C, Granetz R S, Huang Y, Zeng L, Zhang H, Qian J P, Sun Y W and Xiao B J 2021 Plasma Phys. Control. Fusion 63 025008 [47] Zhu J X, Rea C, Granetz R S, Marmar E S, Montes K J, Sweeney R, Tinguely R A, Chen D L, Shen B, Xiao B J, Humphreys D, Barr J and Meneghini O 2021 Nucl. Fusion 61 114005 [48] Yang Z, Xia F, Song X, Gao Z, Huang Y and Wang S 2020 Nucl. Fusion 60 016017 [49] Yang Z, Xia F, Song X, Gao Z, Wang S and Dong Y 2021 Nucl. Fusion 61 126042 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|