Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 075207    DOI: 10.1088/1674-1056/acc1d6
Special Issue: SPECIAL TOPIC — Plasma disruption
SPECIAL TOPIC—Plasma disruption Prev   Next  

Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak

Sheng-Bo Zhao(赵胜波)1,2, Hui-Dong Zhuang(庄会东)1,†, Jing-Sheng Yuan(元京升)1,2, De-Hao Zhang(张德皓)1,2, Li Li(黎立)1,2, Long Zeng(曾龙)3, Da-Long Chen(陈大龙)1, Song-Tao Mao(毛松涛)1, Ming Huang(黄明)1, Gui-Zhong Zuo(左桂忠)1,‡, and Jian-Sheng Hu(胡建生)1
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Abstract  Massive gas injection (MGI) is a traditional plasma disruption mitigation method. This method directly injected massive gas into the pre-disruption plasma and had been developed on the Experimental Advanced Superconducting Tokamak (EAST). Different noble gas injection experiments, including He, Ne, and Ar, were performed to compare the mitigation effect of plasma disruption by evaluating the key parameters such as flight time, pre-thermal quench (pre-TQ), and current quench (CQ). The flight time was shorter for low atomic number (Z) gas, and the decrease in flight time by increasing the amount of gas was insignificant. However, both pre-TQ and CQ durations decreased considerably with the increase in gas injection amount. The effect of atomic mass on pre-TQ and CQ durations showed the opposite trend. The observed trend could help in controlling CQ duration in a reasonable area. Moreover, the analysis of radiation distribution with different impurity injections indicated that low Z impurity could reduce the asymmetry of radiation, which is valuable in mitigating plasma disruption. These results provided essential data support for plasma disruption mitigation on EAST and future fusion devices.
Keywords:  disruption mitigation      massive gas injection (MGI)      Experimental Advanced Superconducting Tokamak (EAST)  
Received:  30 December 2022      Revised:  05 March 2023      Accepted manuscript online:  07 March 2023
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.25.Vy (Impurities in plasmas)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFE0301100 and 2022YFE03130000), the National Natural Science Foundation of China (Grant Nos. 12105322, 11905138, 11905148, and 11905254), the Natural Science Foundation of Anhui Province of China (Grant No. 2108085QA38), the Chinese Postdoctoral Science Found (Grant No. 2021000278), the Presidential Foundation of Hefei Institutes of Physical Science (Grant No. YZJJ2021QN12), the U.S. Department of Energy contract DE-AC02-09CH11466 (Grant No. DE-SC0016553), the Users with Excellence Program of Hefei Science Center CAS (Grant Nos. 2020HSC-UE010 and 2021HSC-UE013), and Interdisciplinary and Collaborative Teams of CAS.
Corresponding Authors:  Hui-Dong Zhuang, Gui-Zhong Zuo     E-mail:  hdzhuang@ipp.ac.cn;zuoguizh@ipp.ac.cn

Cite this article: 

Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生) Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak 2023 Chin. Phys. B 32 075207

[1] Matthews G F, Edwards P, Greuner H, et al. 2009 Phys. Scr. T138 014030
[2] Li Y, Chen Z Y, Yan W, et al. 2021 Nucl. Fusion 61 126025
[3] Lehnen M, Abdullaev S S, Arnoux G, et al. 2009 J. Nucl. Mater. 390-391 740
[4] Zhuang H D and Zhang X D 2015 Rev. Sci. Instrum. 86 053502
[5] de Vries P C, Arnoux G, Huber A, et al. 2012 Plasma Phys. Control. Fusion 54 124032
[6] Hollmann E M, Arnoux G, Commaux N, et al. 2011 J. Nucl. Mater. 415 S27
[7] Pautasso G, Zhang Y, Reiter B, et al. 2011 Nucl. Fusion 51 103009
[8] Zhuang H D and Zhang X D 2013 Plasma Sci. Technol. 15 745
[9] Thornton A J, Gibson K J, Harrison J R, et al. 2012 Plasma Phys. Control. Fusion 54 125007
[10] Reux C, Bucalossi J, Saint-Laurent F, et al. 2010 Nucl. Fusion 50 095006
[11] Bakhtiari M, Olynyk G, Granetz R, et al. 2011 Nucl. Fusion 51 063007
[12] Hollmann E M, Jernigan T C, Parks P B, et al. 2008 Nucl. Fusion 48 115007
[13] Hender T C, Wesley J C, Bialek J, et al. 2007 Nucl. Fusion 47 S128
[14] Pautasso G, Mlynek A, Bernert M, et al. 2015 Nucl. Fusion 55 033015
[15] Kruezi U, Lehnen M, Philipps V, et al. 2011 J. Nucl. Mater. 415 S828
[16] Hollmann E M, Aleynikov P B, Fülöp T, et al. 2015 Phys. Plasmas 22 021802
[17] Lehnen M, Alonso A, Arnoux G, et al. 2011 Nucl. Fusion 51 123010
[18] Chen D L, Granetz R S, Zeng L, et al. 2020 Plasma Phys. Control. Fusion 62 095019
[19] Chen D L, Granetz R S, Shen B, et al. 2015 Chin. Phys. B. 24 025205
[20] Schuller F C 1995 Plasma Phys. Control. Fusion 37 A135
[21] Eidietis N W, Izzo V A, Commaux N, et al. 2017 Phys. Plasmas 24 102504
[22] Li W, Tong R H, Bai W, et al. 2020 Plasma Phys. Control. Fusion 62 045003
[23] Commaux N, Baylor L R, Jernigan T C, et al. 2014 Phys. Plasmas 21 102510
[24] Lehnen M, Gerasimov S N, Jachmich S, et al. 2015 Nucl. Fusion 55 123027
[1] Development of electromagnetic pellet injector for disruption mitigation of tokamak plasma
Feng Li(李峰), Zhong-Yong Chen(陈忠勇), Sheng-Guo Xia(夏胜国), Wei Yan(严伟), Wei-Kang Zhang(张维康), Jun-Hui Tang(唐俊辉), You Li(李由), Yu Zhong(钟昱), Jian-Gang Fang(方建港), Fan-Xi Liu(刘凡溪),Gui-Nan Zou(邹癸南), Yin-Long Yu(喻寅龙), Zi-Sen Nie(聂子森), Zhong-He Jiang(江中和),Neng-Chao Wang(王能超), Yong-Hua Ding(丁永华), Yuan Pan(潘垣), and the J-TEXT team. Chin. Phys. B, 2023, 32(7): 075205.
[2] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[3] Effect of the relative phase between pre-existing 2/1 and 3/1 magnetic islands on the suppression of runaway electrons on J-TEXT
Jin-Yu Xiong(熊金玉), Zhong-He Jiang(江中和), Zi-Xiao Jiao(焦子啸), Zhen Li(李振),Yun-Feng Liang(梁云峰), Zhong-Yong Chen(陈忠勇), Yong-Hua Ding(丁永华), and J-TEXT Team. Chin. Phys. B, 2023, 32(7): 075210.
[4] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
No Suggested Reading articles found!