Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070303    DOI: 10.1088/1674-1056/acb9f0
GENERAL Prev   Next  

First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light

Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托)
Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
Abstract  We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light, utilize a special transformation method to obtain the analytical ground state of the model within the near-resonance regime, and numerically verify the validity of the analytical ground state. It is found that the ground state exhibits a first-order quantum phase transition at the critical point linearly induced by squeezed light, and the ground state entanglement reaches its maximum when the qubit-field coupling strength is large enough at the critical point.
Keywords:  Jaynes-Cummings model      quantum phase transition      entanglement  
Received:  13 December 2022      Revised:  27 January 2023      Accepted manuscript online:  08 February 2023
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  11.10.-z (Field theory)  
  11.10.Ef (Lagrangian and Hamiltonian approach)  
Fund: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2021J01574).
Corresponding Authors:  Li-Tuo Shen     E-mail:  lituoshen@yeah.net

Cite this article: 

Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托) First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light 2023 Chin. Phys. B 32 070303

[1] Tada Y 2019 Phys. Rev. B 100 125145
[2] Shiina R and Kuniyoshi S 2021 J. Phys. Soc. Jpn. 90 074708
[3] Shaginyan V R, Msezane A Z, Japaridze G S, Artamonov S A and Leevik Y S 2022 Materials 15 3901
[4] König E J, Coleman P and Tsvelik A M 2020 Phys. Rev. B 102 155143
[5] De Brito G P, Eichhorn A and Schiffer M 2021 Phys. Lett. B 815 136128
[6] Saleem Y, Dusko A, Cygorek M, Korkusinski M and Hawrylak P 2022 Phys. Rev. B 105 205105
[7] Ge J, Liu Y Z, Wang P Y, Xu Z M, Li J H, Li H, Yan Z H, Wu Y, Xu Y and Wang J 2022 Phys. Rev. B 105 L201404
[8] Rouco M, Tokatly I V and Bergeret F S 2019 Phys. Rev. B 99 094514
[9] Ren X Y, Zhai Y H and Wang J 2022 Nucl. Phys. B 975 115651
[10] Tong X Q, Meng Y M, Jiang X D, Lee C H, De Moraes Neto G D and Gao X L 2021 Phys. Rev. B 103 104202
[11] Jin M L, Zhang S J and Xing L Y, et al. 2019 J. Phys. Chem. Solids 128 211
[12] Yin J X, et al. 2019 Phys. Rev. Lett. 123 217004
[13] Faccioli M and Salasnich L 2019 Phys. Rev. A 99 023614
[14] Choi S, Bao Y M, Qi X L and Altman E 2020 Phys. Rev. Lett. 125 030505
[15] Yin S Y, Song J, Liu S T and Song G L 2021 Phys. Lett. A 389 127089
[16] Nandi P, Bhattacharyya S and Dasgupta S 2022 Phys. Rev. Lett. 128 247201
[17] Huh K B, Ikeda K, Jahnke V and Kim K Y 2021 Phys. Rev. E 104 024136
[18] Yuste A, Cartwright C, De Chiara G and Sanpera A 2018 New J. Phys. 20 043006
[19] Bea Y, Jokela N and Ramallo A V 2016 Phys. Rev. D 94 026003
[20] Abdel Rady A S, Hassan S S A, Osman A N A and Salah A 2017 Int. J. Mod. Phys. B 31 1750091
[21] Rossatto D Z, Pires D P, De Paula F M and De Sá Neto O P 2020 Phys. Rev. A 102 053716
[22] Sun Z H, Cai J Q, Tang Q C, Hu Y and Fan H 2020 Ann. Phys. 532 1900270
[23] Corps Á L and Relaño A 2022 Phys. Rev. A 106 047701
[24] Quiroz Juárez M A, Chávez Carlos J, Aragón J L, Hirsch J G and León Montiel Roberto De J 2020 Phys. Rev. Research 2 033169
[25] Kongkhambut P, Keßler H, Skulte J, Mathey L, Cosme J G and Hemmerich A 2021 Phys. Rev. Lett. 127 253601
[26] Lundgren R, Gorshkov A V and Maghrebi M F 2020 Phys. Rev. A 102 032218
[27] Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C and Duan L M 2021 Nat. Commun. 12 1126
[28] Hwang M J, Puebla R and Plenio M B 2015 Phys. Rev. Lett. 115 180404
[29] Shen L T, Yang Z B, Lu M, Chen R X and Wu H Z 2014 Appl. Phys. B 117 195
[30] Xie Y F, Chen X Y, Dong X F and Chen Q H 2020 Phys. Rev. A 101 053803
[31] Ying Z J, Felicetti S, Liu G and Braak D 2022 Entropy 24 1015
[32] Yoshihara F, Fuse T, Ao Z, Ashhab S, Kakuyanagi K, Saito S, Aoki T, Koshino K and Semba K 2018 Phys. Rev. Lett. 120 183601
[33] Zhu C J, Ping L L, Yang Y P and Agarwal G S 2020 Phys. Rev. Lett. 124 073602
[34] Shen L T, Tang C Q, Shi Z C, Wu H Z, Yang Z B and Zheng S B 2022 Phys. Rev. A 106 023705
[35] Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473
[36] Zhang Y Y and Chen X Y 2017 Phys. Rev. A 96 063821
[1] Algorithm for evaluating distance-based entanglement measures
Yixuan Hu(胡奕轩), Ye-Chao Liu(刘烨超), and Jiangwei Shang(尚江伟). Chin. Phys. B, 2023, 32(8): 080307.
[2] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然),Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[3] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[4] Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志). Chin. Phys. B, 2023, 32(6): 060301.
[5] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[6] New light fields based on integration theory within the Weyl ordering product of operators
Ke Zhang(张科), Lan-Lan Li(李兰兰), Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040301.
[7] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[8] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[9] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[10] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[11] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[12] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[13] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[14] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[15] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
No Suggested Reading articles found!