|
|
First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light |
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托)† |
Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China |
|
|
Abstract We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light, utilize a special transformation method to obtain the analytical ground state of the model within the near-resonance regime, and numerically verify the validity of the analytical ground state. It is found that the ground state exhibits a first-order quantum phase transition at the critical point linearly induced by squeezed light, and the ground state entanglement reaches its maximum when the qubit-field coupling strength is large enough at the critical point.
|
Received: 13 December 2022
Revised: 27 January 2023
Accepted manuscript online: 08 February 2023
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
11.10.-z
|
(Field theory)
|
|
11.10.Ef
|
(Lagrangian and Hamiltonian approach)
|
|
Fund: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2021J01574). |
Corresponding Authors:
Li-Tuo Shen
E-mail: lituoshen@yeah.net
|
Cite this article:
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托) First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light 2023 Chin. Phys. B 32 070303
|
[1] Tada Y 2019 Phys. Rev. B 100 125145 [2] Shiina R and Kuniyoshi S 2021 J. Phys. Soc. Jpn. 90 074708 [3] Shaginyan V R, Msezane A Z, Japaridze G S, Artamonov S A and Leevik Y S 2022 Materials 15 3901 [4] König E J, Coleman P and Tsvelik A M 2020 Phys. Rev. B 102 155143 [5] De Brito G P, Eichhorn A and Schiffer M 2021 Phys. Lett. B 815 136128 [6] Saleem Y, Dusko A, Cygorek M, Korkusinski M and Hawrylak P 2022 Phys. Rev. B 105 205105 [7] Ge J, Liu Y Z, Wang P Y, Xu Z M, Li J H, Li H, Yan Z H, Wu Y, Xu Y and Wang J 2022 Phys. Rev. B 105 L201404 [8] Rouco M, Tokatly I V and Bergeret F S 2019 Phys. Rev. B 99 094514 [9] Ren X Y, Zhai Y H and Wang J 2022 Nucl. Phys. B 975 115651 [10] Tong X Q, Meng Y M, Jiang X D, Lee C H, De Moraes Neto G D and Gao X L 2021 Phys. Rev. B 103 104202 [11] Jin M L, Zhang S J and Xing L Y, et al. 2019 J. Phys. Chem. Solids 128 211 [12] Yin J X, et al. 2019 Phys. Rev. Lett. 123 217004 [13] Faccioli M and Salasnich L 2019 Phys. Rev. A 99 023614 [14] Choi S, Bao Y M, Qi X L and Altman E 2020 Phys. Rev. Lett. 125 030505 [15] Yin S Y, Song J, Liu S T and Song G L 2021 Phys. Lett. A 389 127089 [16] Nandi P, Bhattacharyya S and Dasgupta S 2022 Phys. Rev. Lett. 128 247201 [17] Huh K B, Ikeda K, Jahnke V and Kim K Y 2021 Phys. Rev. E 104 024136 [18] Yuste A, Cartwright C, De Chiara G and Sanpera A 2018 New J. Phys. 20 043006 [19] Bea Y, Jokela N and Ramallo A V 2016 Phys. Rev. D 94 026003 [20] Abdel Rady A S, Hassan S S A, Osman A N A and Salah A 2017 Int. J. Mod. Phys. B 31 1750091 [21] Rossatto D Z, Pires D P, De Paula F M and De Sá Neto O P 2020 Phys. Rev. A 102 053716 [22] Sun Z H, Cai J Q, Tang Q C, Hu Y and Fan H 2020 Ann. Phys. 532 1900270 [23] Corps Á L and Relaño A 2022 Phys. Rev. A 106 047701 [24] Quiroz Juárez M A, Chávez Carlos J, Aragón J L, Hirsch J G and León Montiel Roberto De J 2020 Phys. Rev. Research 2 033169 [25] Kongkhambut P, Keßler H, Skulte J, Mathey L, Cosme J G and Hemmerich A 2021 Phys. Rev. Lett. 127 253601 [26] Lundgren R, Gorshkov A V and Maghrebi M F 2020 Phys. Rev. A 102 032218 [27] Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C and Duan L M 2021 Nat. Commun. 12 1126 [28] Hwang M J, Puebla R and Plenio M B 2015 Phys. Rev. Lett. 115 180404 [29] Shen L T, Yang Z B, Lu M, Chen R X and Wu H Z 2014 Appl. Phys. B 117 195 [30] Xie Y F, Chen X Y, Dong X F and Chen Q H 2020 Phys. Rev. A 101 053803 [31] Ying Z J, Felicetti S, Liu G and Braak D 2022 Entropy 24 1015 [32] Yoshihara F, Fuse T, Ao Z, Ashhab S, Kakuyanagi K, Saito S, Aoki T, Koshino K and Semba K 2018 Phys. Rev. Lett. 120 183601 [33] Zhu C J, Ping L L, Yang Y P and Agarwal G S 2020 Phys. Rev. Lett. 124 073602 [34] Shen L T, Tang C Q, Shi Z C, Wu H Z, Yang Z B and Zheng S B 2022 Phys. Rev. A 106 023705 [35] Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473 [36] Zhang Y Y and Chen X Y 2017 Phys. Rev. A 96 063821 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|