Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 060301    DOI: 10.1088/1674-1056/ac9044
GENERAL Prev   Next  

Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement

Zhi Zeng(曾志)1,2,3,†
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  We present an efficient scheme for the complete analysis of hyperentangled Greenberger-Horne-Zeilinger (GHZ) state in polarization and time-bin degrees of freedom with two steps. Firstly, the polarization GHZ state is distinguished completely and nondestructively, resorting to the controlled phase flip (CPF) gate constructed by the cavity-assisted interaction. Subsequently, the time-bin GHZ state is analyzed by using the preserved polarization entanglement. With the help of CPF gate and self-assisted mechanism, our scheme can be directly generalized to the complete N-photon hyperentangled GHZ state analysis, and it may have potential applications in the hyperentanglement-based quantum communication.
Keywords:  hyperentangled state analysis      polarization-time-bin hyperentanglement      controlled phase flip (CPF) gate  
Received:  10 June 2022      Revised:  06 September 2022      Accepted manuscript online:  08 September 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Corresponding Authors:  Zhi Zeng     E-mail:  zengzhiphy@yeah.net

Cite this article: 

Zhi Zeng(曾志) Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement 2023 Chin. Phys. B 32 060301

[1] Ekert A K1991 Phys. Rev. Lett. 67 661
[2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K1993 Phys. Rev. Lett. 70 1895
[3] Bennett C H and Wiesner S J1992 Phys. Rev. Lett. 69 2881
[4] Hillery M, Bužek V and Berthiaume A1999 Phys. Rev. A 59 1829
[5] Karlsson A, Koashi M and Imoto N1999 Phys. Rev. A 59 162
[6] Long G L and Liu X S2002 Phys. Rev. A 65 032302
[7] Deng F G, Long G L and Liu X S2003 Phys. Rev. A 68 042317
[8] Deng F G and Long G L2004 Phys. Rev. A 69 052319
[9] Deng F G, Ren B C and Li X H2017 Sci. Bull. 62 46
[10] Kwiat P G and Weinfurter H1998 Phys. Rev. A 58 R2623
[11] Walborn S P, Pádua S and Monken C H2003 Phys. Rev. A 68 042313
[12] Song S, Cao Y, Sheng Y B and Long G L2013 Quantum Inf. Process. 12 381
[13] Zeng Z, Wang C and Li X H2014 Commun. Theor. Phys. 62 683
[14] Li X H2010 Phys. Rev. A 82 044304
[15] Sheng Y B and Deng F G2010 Phys. Rev. A 82 044305
[16] Deng F G2011 Phys. Rev. A 83 062316
[17] Zeng Z, Wang C, Li X H and Wei H2015 Laser Phys. Lett. 12 015201
[18] Ren B C and Deng F G2014 Sci. Rep. 4 4623
[19] Wang T J, Zhang Y and Wang C2014 Laser Phys. Lett. 11 025203
[20] Li T and Long G L2016 Phys. Rev. A 94 022343
[21] Wang G Y, Li T, Ai Q and Deng F G2018 Opt. Express 26 23333
[22] Sheng Y B, Deng F G and Long G L2010 Phys. Rev. A 82 032318
[23] Ren B C, Wei H R, Hua M, Li T and Deng F G2012 Opt. Express 20 24664
[24] Wang T J, Lu Y and Long G L2012 Phys. Rev. A 86 042337
[25] Liu Q and Zhang M2015 Phys. Rev. A 91 062321
[26] Li X H and Ghose S2016 Opt. Express 24 18388
[27] Zeng Z2018 Laser Phys. Lett. 15 055204
[28] Wang G Y, Ren B C, Deng F G and Long G L2019 Opt. Express 27 8994
[29] Cao C, Zhang L, Han Y H, Yin P P, Fan L, Duan Y W and Zhang R2020 Opt. Express 28 2857
[30] Ren B C, Du F F and Deng F G2014 Phys. Rev. A 90 052309
[31] Du F F, Li T and Long G L2016 Ann. Phys. 375 105
[32] Wang G Y, Li T, Ai Q, Alsaedi A, Hayat T and Deng F G2018 Phys. Rev. Appl. 10 054058
[33] Li X H and Ghose S2015 Phys. Rev. A 91 062302
[34] Ren B C and Deng F G2013 Laser Phys. Lett. 10 115201
[35] Wang T J, Liu L L, Zhang R, Cao C and Wang C2015 Opt. Express 23 9284
[36] Wei T C, Barreiro J T and Kwiat P G2007 Phys. Rev. A 75 060305
[37] Li X H and Ghose S2017 Phys. Rev. A 96 020303
[38] Xia Y, Chen Q Q, Song J and Song H S2012 J. Opt. Soc. Am. B 29 1029
[39] Liu Q and Zhang M2013 J. Opt. Soc. Am. B 30 2263
[40] Li X H and Ghose S2016 Phys. Rev. A 93 022302
[41] Zheng Y Y, Liang L X and Zhang M2018 Quantum Inf. Process. 17 172
[42] Zeng Z and Zhu K D2020 New J. Phys. 22 083051
[43] Duan L M and Kimble H J2004 Phys. Rev. Lett. 92 127902
[44] Schuck C, Huber G, Kurtsiefer C and Weinfurter H2006 Phys. Rev. Lett. 96 190501
[45] Barbieri M, Vallone G, Mataloni P and De Martini F2007 Phys. Rev. A 75 042317
[46] Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
[47] Williams B P, Sadlier R J and Humble T S2017 Phys. Rev. Lett. 118 050501
[48] Lu C Y, Yang T and Pan J W2009 Phys. Rev. Lett. 103 020501
[49] Fu Y, Yin H L, Chen T Y and Chen Z B2015 Phys. Rev. Lett. 114 090501
[50] Pramanik T, et al.2020 Phys. Rev. Applied 14 064074
[51] Yang Y G, Liu X X, Gao S, Zhou Y H, Shi W M, Li J and Li D2021 Phys. Rev. A 104 052415
[52] Gao W B, et al. 2010 Nat. Phys. 6 331
[53] Wang X L, et al.2018 Phys. Rev. Lett. 120 260502
[54] Xiao Y F, Lin X M, Gao J, Yang Y, Han Z F and Guo G C2004 Phys. Rev. A 70 042314
[55] Lin X M, Zhou Z W, Ye M Y, Xiao Y F and Guo G C2006 Phys. Rev. A 73 012323
[56] Gao J, Sun F W and Wong C W2008 Appl. Phys. Lett. 93 151108
[57] Wei H R and Long G L2015 Phys. Rev. A 91 032324
[58] Hao Y M, Lin G W, Xia K, Lin X M, Niu Y P and Gong S Q2015 Sci. Rep. 5 10005
[59] Hacker B, Welte S, Rempe G and Ritter S2016 Nature 536 193
[60] Kimiaee Asadi F, Wein S C and Simon C2020 Phys. Rev. A 102 013703
[61] Hao Y, Lin G, Niu Y and Gong S2019 Quantum Inf. Process. 18 18
[62] Wei H R, Zheng Y B, Hua M and Xu G F2020 Appl. Phys. Express 13 082007
[1] Quantum homomorphic broadcast multi-signature based on homomorphic aggregation
Xin Xu(徐鑫) and Ai-Han Yin(殷爱菡). Chin. Phys. B, 2023, 32(7): 070302.
[2] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[3] Energy shift and subharmonics induced by nonlinearity in a quantum dot system
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(6): 060303.
[4] Bounds on positive operator-valued measure based coherence of superposition
Meng-Li Guo(郭梦丽), Jin-Min Liang(梁津敏), Bo Li(李波), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺). Chin. Phys. B, 2023, 32(5): 050302.
[5] Quantum color image scaling based on bilinear interpolation
Chao Gao(高超), Ri-Gui Zhou(周日贵), and Xin Li(李鑫). Chin. Phys. B, 2023, 32(5): 050303.
[6] One-shot detection limits of time-alignment two-photon illumination radar
Wen-Long Gao(高文珑), Lu-Ping Xu(许录平), Hua Zhang(张华), Bo Yan(阎博), Peng-Xian Li(李芃鲜), and Gui-Ting Hu(胡桂廷). Chin. Phys. B, 2023, 32(5): 050304.
[7] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[8] Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert-Schmidt distance
Shaohua Xiang(向少华), Shanshan Li(李珊珊), and Xianwu Mi(米贤武). Chin. Phys. B, 2023, 32(5): 050309.
[9] Enhanced phase sensitive amplification towards improving noise immunity
Hui Guo(郭辉), Zhi Li(李治), Hengxin Sun(孙恒信), Kui Liu(刘奎), and Jiangrui Gao(郜江瑞). Chin. Phys. B, 2023, 32(5): 054204.
[10] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[11] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东), Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[12] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[13] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[14] Quantum speed limit of a single atom in a squeezed optical cavity mode
Ya-Jie Ma(马雅洁), Xue-Chen Gao(高雪晨), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040308.
[15] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
No Suggested Reading articles found!