Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志)1,2,3,†
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 3 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract We present an efficient scheme for the complete analysis of hyperentangled Greenberger-Horne-Zeilinger (GHZ) state in polarization and time-bin degrees of freedom with two steps. Firstly, the polarization GHZ state is distinguished completely and nondestructively, resorting to the controlled phase flip (CPF) gate constructed by the cavity-assisted interaction. Subsequently, the time-bin GHZ state is analyzed by using the preserved polarization entanglement. With the help of CPF gate and self-assisted mechanism, our scheme can be directly generalized to the complete N-photon hyperentangled GHZ state analysis, and it may have potential applications in the hyperentanglement-based quantum communication.
Zhi Zeng(曾志) Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement 2023 Chin. Phys. B 32 060301
[1] Ekert A K1991 Phys. Rev. Lett.67 661 [2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K1993 Phys. Rev. Lett.70 1895 [3] Bennett C H and Wiesner S J1992 Phys. Rev. Lett.69 2881 [4] Hillery M, Bužek V and Berthiaume A1999 Phys. Rev. A59 1829 [5] Karlsson A, Koashi M and Imoto N1999 Phys. Rev. A59 162 [6] Long G L and Liu X S2002 Phys. Rev. A65 032302 [7] Deng F G, Long G L and Liu X S2003 Phys. Rev. A68 042317 [8] Deng F G and Long G L2004 Phys. Rev. A69 052319 [9] Deng F G, Ren B C and Li X H2017 Sci. Bull.62 46 [10] Kwiat P G and Weinfurter H1998 Phys. Rev. A 58 R2623 [11] Walborn S P, Pádua S and Monken C H2003 Phys. Rev. A68 042313 [12] Song S, Cao Y, Sheng Y B and Long G L2013 Quantum Inf. Process.12 381 [13] Zeng Z, Wang C and Li X H2014 Commun. Theor. Phys.62 683 [14] Li X H2010 Phys. Rev. A82 044304 [15] Sheng Y B and Deng F G2010 Phys. Rev. A82 044305 [16] Deng F G2011 Phys. Rev. A83 062316 [17] Zeng Z, Wang C, Li X H and Wei H2015 Laser Phys. Lett.12 015201 [18] Ren B C and Deng F G2014 Sci. Rep.4 4623 [19] Wang T J, Zhang Y and Wang C2014 Laser Phys. Lett.11 025203 [20] Li T and Long G L2016 Phys. Rev. A94 022343 [21] Wang G Y, Li T, Ai Q and Deng F G2018 Opt. Express26 23333 [22] Sheng Y B, Deng F G and Long G L2010 Phys. Rev. A82 032318 [23] Ren B C, Wei H R, Hua M, Li T and Deng F G2012 Opt. Express20 24664 [24] Wang T J, Lu Y and Long G L2012 Phys. Rev. A86 042337 [25] Liu Q and Zhang M2015 Phys. Rev. A91 062321 [26] Li X H and Ghose S2016 Opt. Express24 18388 [27] Zeng Z2018 Laser Phys. Lett.15 055204 [28] Wang G Y, Ren B C, Deng F G and Long G L2019 Opt. Express27 8994 [29] Cao C, Zhang L, Han Y H, Yin P P, Fan L, Duan Y W and Zhang R2020 Opt. Express28 2857 [30] Ren B C, Du F F and Deng F G2014 Phys. Rev. A90 052309 [31] Du F F, Li T and Long G L2016 Ann. Phys.375 105 [32] Wang G Y, Li T, Ai Q, Alsaedi A, Hayat T and Deng F G2018 Phys. Rev. Appl.10 054058 [33] Li X H and Ghose S2015 Phys. Rev. A91 062302 [34] Ren B C and Deng F G2013 Laser Phys. Lett.10 115201 [35] Wang T J, Liu L L, Zhang R, Cao C and Wang C2015 Opt. Express23 9284 [36] Wei T C, Barreiro J T and Kwiat P G2007 Phys. Rev. A75 060305 [37] Li X H and Ghose S2017 Phys. Rev. A96 020303 [38] Xia Y, Chen Q Q, Song J and Song H S2012 J. Opt. Soc. Am. B29 1029 [39] Liu Q and Zhang M2013 J. Opt. Soc. Am. B30 2263 [40] Li X H and Ghose S2016 Phys. Rev. A93 022302 [41] Zheng Y Y, Liang L X and Zhang M2018 Quantum Inf. Process.17 172 [42] Zeng Z and Zhu K D2020 New J. Phys.22 083051 [43] Duan L M and Kimble H J2004 Phys. Rev. Lett.92 127902 [44] Schuck C, Huber G, Kurtsiefer C and Weinfurter H2006 Phys. Rev. Lett.96 190501 [45] Barbieri M, Vallone G, Mataloni P and De Martini F2007 Phys. Rev. A75 042317 [46] Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys.4 282 [47] Williams B P, Sadlier R J and Humble T S2017 Phys. Rev. Lett.118 050501 [48] Lu C Y, Yang T and Pan J W2009 Phys. Rev. Lett.103 020501 [49] Fu Y, Yin H L, Chen T Y and Chen Z B2015 Phys. Rev. Lett.114 090501 [50] Pramanik T, et al.2020 Phys. Rev. Applied14 064074 [51] Yang Y G, Liu X X, Gao S, Zhou Y H, Shi W M, Li J and Li D2021 Phys. Rev. A104 052415 [52] Gao W B, et al. 2010 Nat. Phys.6 331 [53] Wang X L, et al.2018 Phys. Rev. Lett.120 260502 [54] Xiao Y F, Lin X M, Gao J, Yang Y, Han Z F and Guo G C2004 Phys. Rev. A70 042314 [55] Lin X M, Zhou Z W, Ye M Y, Xiao Y F and Guo G C2006 Phys. Rev. A73 012323 [56] Gao J, Sun F W and Wong C W2008 Appl. Phys. Lett.93 151108 [57] Wei H R and Long G L2015 Phys. Rev. A91 032324 [58] Hao Y M, Lin G W, Xia K, Lin X M, Niu Y P and Gong S Q2015 Sci. Rep.5 10005 [59] Hacker B, Welte S, Rempe G and Ritter S2016 Nature536 193 [60] Kimiaee Asadi F, Wein S C and Simon C2020 Phys. Rev. A102 013703 [61] Hao Y, Lin G, Niu Y and Gong S2019 Quantum Inf. Process.18 18 [62] Wei H R, Zheng Y B, Hua M and Xu G F2020 Appl. Phys. Express13 082007
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.