Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070304    DOI: 10.1088/1674-1056/ac9b32
GENERAL Prev   Next  

A new method of constructing adversarial examples for quantum variational circuits

Jinge Yan(颜金歌)1,2, Lili Yan(闫丽丽)1,2,†, and Shibin Zhang(张仕斌)1,2
1 School of Cybersecurity, Chengdu University of Information Technology, Sichuan 610000, China;
2 Advanced Cryptography and System Security Key Laboratory of Sichuan Province, Sichuan 610000, China
Abstract  A quantum variational circuit is a quantum machine learning model similar to a neural network. A crafted adversarial example can lead to incorrect results for the model. Using adversarial examples to train the model will greatly improve its robustness. The existing method is to use automatic differentials or finite difference to obtain a gradient and use it to construct adversarial examples. This paper proposes an innovative method for constructing adversarial examples of quantum variational circuits. In this method, the gradient can be obtained by measuring the expected value of a quantum bit respectively in a series quantum circuit. This method can be used to construct the adversarial examples for a quantum variational circuit classifier. The implementation results prove the effectiveness of the proposed method. Compared with the existing method, our method requires fewer resources and is more efficient.
Keywords:  quantum variational circuit      adversarial examples      quantum machine learning      quantum circuit  
Received:  27 June 2022      Revised:  24 September 2022      Accepted manuscript online:  19 October 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62076042 and 62102049), the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC0535), the Key Research and Development Project of Sichuan Province (Grant Nos. 2021YFSY0012 and 2021YFG0332), the Key Research and Development Project of Chengdu (Grant No. 2021-YF05-02424-GX), and the Innovation Team of Quantum Security Communication of Sichuan Province (Grant No. 17TD0009).
Corresponding Authors:  Lili Yan     E-mail:  yanlili@cuit.edu.cn

Cite this article: 

Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌) A new method of constructing adversarial examples for quantum variational circuits 2023 Chin. Phys. B 32 070304

[1] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195
[2] Sarma D S, Deng D L and Duan L M 2019 Phys. Today 72 48
[3] Jordan M I and Mitchell T M 2015 Science 349 255
[4] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[5] Chang C C and Lin C J ACM Trans. Intell. Syst. Technol. 2 1
[6] Ji A B, Pang J H and Qiu H J 2010 Expert. Syst. Appl. 37 3495
[7] Knill E, Laflamme R and Milburn G J 2001 Nature. 409 46
[8] Wiebe N, Braun D and Lloyd S 2012 Phys. Rev. Lett. 109 050505
[9] Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R and Carleo G 2018 Nat. Phys. 14 447
[10] Dallaire-Demers P L and Killoran N 2018 Phys. Rev. A 98 012324
[11] Harrow A W, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502
[12] Sun J and Lu S F 2020 Chin. Phys. B 29 100303
[13] Meng Y, Mei F, Chen G and Jia S T 2020 Chin. Phys. B 29 070501
[14] Rebentrost P, Mohseni M and Lloyd S 2014 Phys. Rev. Lett. 113 130503
[15] Li Z K, Liu X M, Xu N Y and Du J F 2015 Phys. Rev. Lett. 114 140504
[16] Havlíček V, Córcoles A D, Temme K, Harrow A W, Kandala A, Chow J M and Gambetta J M 2019 Nature 567 209
[17] Cong I and Duan L M 2016 New J. Phys. 18 073011
[18] Schmidhuber J 2015 Neural Networks 61 85
[19] Liu J, Lim K H, Wood K L, Huang W, Guo C and Huang H L 2021 Sci. China Phys. Mech. 64 290311
[20] Cong I, Choi S and Lukin M D 2019 Nat. Phys. 15 1273
[21] Shafee F 2007 Eng. Appl. Artif. Intel. 20 429
[22] Li P C and Li S Y 2008 J. Syst. Eng. Electron. 19 167
[23] Benedetti M, Lloyd E, Sack S and Fiorentini M 2019 Quantum Sci. Technol. 4 019601
[24] Yu X M, Tan X S, Yu H F and Yu Y 2018 Acta Phys. Sin 67 220302 (in Chinese)
[25] Li X Q, Zhao Y F, Tang Y N and Yang W J 2018 Acta Phys. Sin 67 070302 (in Chinese)
[26] Huang H L, Du Y X, Gong M, et al. 2021 Phys. Rev. Appl. 16 024051
[27] Harrigan M P, Sung K J, Neeley M, et al. 2021 Nat. Phys. 17 332
[28] Nilesh D, Pedro D M, Sumit S, et al. 2004 Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, August 22-25, 2004, Seattle, USA, p. 99
[29] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I and Fergus R 2014 arXiv: 1312.6199
[30] Miyato T, Andrew M and Goodfellow I 2021 arxiv: 1605.07725
[31] GoodFellow I, Shlens J and Szegedy C 2015 arxiv: 1412.6572
[32] Liu N N and Wittek P 2020 Phys. Rev. A 101 062331
[33] Neidinger R 2010 SIAM Rev. 52 545
[34] Lu S, Duan L M and Deng D L 2020 Phys. Rev. Res. 2 033212
[35] Schuld M and Petruccione F 2018 Supervised Learning with Quantum Computers pp. 1-287
[36] Mitarai K, Negoro M, Kitagawa and Fujii K 2018 Phys. Rev. A 98 032309
[37] https://github.com/PennyLaneAI/pennylane
[38] http://yann.lecun.com/exdb/mnist/
[1] Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
Chenxiao Dong(董陈潇), Zhesen Yang(杨哲森), Jinfeng Zeng(曾进峰), and Jiangping Hu(胡江平). Chin. Phys. B, 2023, 32(7): 070305.
[2] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
[3] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[4] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[5] Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
Xiu-Bo Chen(陈秀波), Li-Yun Zhao(赵立云), Gang Xu(徐刚), Xing-Bo Pan(潘兴博), Si-Yi Chen(陈思怡), Zhen-Wen Cheng(程振文), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2022, 31(4): 040305.
[6] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[7] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[8] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[9] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[10] Novel quantum secret image sharing scheme
Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文). Chin. Phys. B, 2019, 28(4): 040302.
[11] Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Jie Li(李洁), Yirong Jin(金贻荣), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(7): 074206.
[12] Two-qubit pure state tomography by five product orthonormal bases
Yu Wang(王宇), Yun Shang(尚云). Chin. Phys. B, 2018, 27(10): 100306.
[13] Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio
Zhi-Guo Qu(瞿治国), Huang-Xing He(何煌兴), Tao Li(李涛). Chin. Phys. B, 2018, 27(1): 010306.
[14] Phase-controlled coherent population trapping in superconducting quantum circuits
Cheng Guang-Ling (程广玲), Wang Yi-Ping (王一平), Chen Ai-Xi (陈爱喜). Chin. Phys. B, 2015, 24(4): 044204.
[15] Switching from positive to negative absorption with electromagnetically induced transparency in circuit quantum electrodynamics
Li Hai-Chao (李海超), Ge Guo-Qin (葛国勤). Chin. Phys. B, 2014, 23(5): 054206.
No Suggested Reading articles found!