Abstract Quantum multi-signature has attracted extensive attention since it was put forward. Beside its own improvement, related research is often combined with other quantum signature. However, this type of quantum signature has one thing in common, that is, the generation and verification of signature depend heavily on the shared classical secret key. In order to increase the reliability of signature, the homomorphic aggregation technique is applied to quantum multi-signature, and then we propose a quantum homomorphic multi-signature protocol. Unlike previous quantum multi-signature protocols, this protocol utilizes homomorphic properties to complete signature generation and verification. In the signature generation phase, entanglement swapping is introduced, so that the individual signatures of multiple users are aggregated into a new multi-signature. The original quantum state is signed by the shared secret key to realize the verification of the signature in the verification phase. The signature process satisfies the homomorphic property, which can improve the reliability of the signature.
Xin Xu(徐鑫) and Ai-Han Yin(殷爱菡) Quantum homomorphic broadcast multi-signature based on homomorphic aggregation 2023 Chin. Phys. B 32 070302
[1] Shor P W 1994 Proceedings of 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA (1994) 124-134 [2] Bennett C H, Brassard G 1984 Theoretical Computer Science560 7 [3] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C and Han Z F 2022 Nat. Photon.16 154 [4] Fan Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C and Han Z F 2021 Photon. Res.9 1881 [5] Fan Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Chen W, Zhou Z, Wang Z H, Teng J, Guo G C and Han Z F 2022 Optica9 812 [6] Yin H L, Fu Y and Chen Z B 2016 Phys. Rev. A93 032316 [7] Yin H L, Fu Y, Liu H, Tang Q J, Wang J, You L X, Zhang W J, Chen S J, Wang Z, Zhang Q, Chen T Y, Chen Z B and Pan J W 2017 Phys. Rev. A95 032334 [8] Yin H L, Wang W L, Tang Y L, Zhao Q, Liu H, Sun X X, Zhang W J, Li H, Puthoor I V, You L X, Andersson E, Wang Z, Liu Y, Jiang X, Ma X F, Zhang Q, Curty M, Chen T Y and Pan J W 2017 Phys. Rev. A95 042338 [9] Lu Y S, Cao X Y, Weng C X, Gu J, Xie Y M, Zhou M G, Yin H L and Chen Z B 2021 Opt. Express29 10162 [10] Weng C X, Lu Y S, Gao R Q, Xie Y M, Gu J, Li C L, Li B H, Yin H L and Chen Z B 2021 Opt. Express29 27661 [11] Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S and Chen Z B 2023 National Science Review10 nwac228 [12] Cai Z Y, Liu S, Han Z Y, Wang R and Huang Y H 2021 Entropy23 1520 [13] Tiliwalidi K, Zhang J Z and Xie S C 2019 Int. J. Theor. Phys.58 3510 [14] Dai J Q, Zhang S B and Xia J Y 2020 Int. J. Comput. Sci. Eng.22 243 [15] Wen X J and Liu Y 2007 Journal of Electronics35 1079 [16] Wen X J, Liu Y and Zhang P Y 2007 Wuhan University Journal of Natural Sciences.12 29 [17] Wen X J, Liu Y and Zhou N R 2008 Int. J. Mod. Phys. B22 4251 [18] Du C B, Shi R H, Zhong H, Cui J, Zhang Shun and Xu Y 2016 J. Quantum Electron.33 329 [19] Jiang D H, Hu Z Q, Liang X Q and Xu G B 2019 Quantum Information Processing18 268 [20] He Q Q, Xin X J and Yang Q L 2021 Quantum Information Processing20 26 [21] Wang T Y, Wang X X, Cai X Q and Zhang R L 2020 Quantum Information Processing19 241 [22] Yu J and Zhang J H 2021 Int. J. Theor. Phys.60 2709 [23] Qin H W, Tang W K S and Tso R 2019 Quantum Information Processing18 53 [24] Zhang W, Rong Z B, Huang Z M and Zheng S G 2019 Int. J. Theor. Phys.58 2744 [25] Shao A X, Zhang J Z and Xie S C 2017 Int. J. Theor. Phys.56 1241 [26] Niu X F, Zhang J Z, Xie S C and Chen B Q 2018 Commun. Theor. Phys.70 529 [27] Shang T, Zhao X J, Wang C and Liu J W 2015 Quantum Information Processing14 393 [28] Luo Q B, Yang G W, She K, Li X Y and Fang J B 2016 Quantum Information Processing15 5051 [29] Li K, Shang T and Liu J W 2017 Quantum Information Processing16 246 [30] Shang T, Pei Z, Chen Liu R Y and Liu J W 2019 Computers, Materials & Continua59 149 [31] Lin Q, Yan H Y, Huang Z G and Chen W B 2018 IEEE Access6 20632 [32] Xie C G, Weng J, Lu W and Hou L 2020 Science China Information Sciences63 139107 [33] Niu P H, Chen Y and Li C 2016 Int. J. Theor. Phys.55 302 [34] Du Z L, Li X L and Liu X J 2020 Int. J. Theor. Phys.59 622 [35] Gao G and Wang Y 2017 Commun. Theor. Phys.67 33 [36] Zou H J, Zhang K J and Song T T 2013 Quantum Information Processing12 2343 [37] Yang Y G, Wang Y H and Wen Q Y 2010 Chin. Phys. B19 070304 [38] Yang Y T, Xue T and Li Z C 2011 Journal of University of Science and Technology of China41 924 [39] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L and Chen Z B 2022 PRX Quantum3 020315
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.