CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Epitaxial growth of trilayer graphene moiré superlattice |
Yalong Yuan(袁亚龙)1,2, Yanbang Chu(褚衍邦)1,2, Cheng Hu(胡成)3,4, Jinpeng Tian(田金朋)1,2, Le Liu(刘乐)1,2, Fanfan Wu(吴帆帆)1,2, Yiru Ji(季怡汝)1,2, Jiaojiao Zhao(赵交交)1,2, Zhiheng Huang(黄智恒)1,2, Xiaozhou Zan(昝晓洲)1,2, Luojun Du(杜罗军)1,2, Kenji Watanabe5, Takashi Taniguchi6, Dongxia Shi(时东霞)1,2,3, Zhiwen Shi(史志文)3,4, Wei Yang(杨威)1,2,7,‡, and Guangyu Zhang(张广宇)1,2,7,† |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 4 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China; 5 Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; 6 International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; 7 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract The graphene-based moiré superlattice has been demonstrated as an exciting system for investigating strong correlation phenomenon. However, the fabrication of such moiré superlattice mainly relies on transfer technology. Here, we report the epitaxial growth of trilayer graphene (TLG) moiré superlattice on hexagonal boron nitride (hBN) by a remote plasma-enhanced chemical vapor deposition method. The as-grown TLG/hBN shows a uniform moiré pattern with a period of ~ 15 nm by atomic force microscopy (AFM) imaging, which agrees with the lattice mismatch between graphene and hBN. By fabricating the device with both top and bottom gates, we observed a gate-tunable bandgap at charge neutral point (CNP) and displacement field tunable satellite resistance peaks at half and full fillings. The resistance peak at half-filling indicates a strong electron-electron correlation in our grown TLG/hBN superlattice. In addition, we observed quantum Hall states at Landau level filling factors ν = 6, 10, 14, ..., indicating that our grown trilayer graphene has the ABC stacking order. Our work suggests that epitaxy provides an easy way to fabricate stable and reproducible two-dimensional strongly correlated electronic materials.
|
Received: 23 February 2023
Revised: 12 April 2023
Accepted manuscript online: 18 April 2023
|
PACS:
|
73.21.Cd
|
(Superlattices)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309600), the National Natural Science Foundation of China (Grant Nos. 61888102, 11834017, and 12074413), the Strategic Priority Research Program of CAS (Grant Nos. XDB30000000 and XDB33000000), and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101340001). K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (Grant No. JPMXP0112101001), JSPS KAKENHI (Grant Nos. 19H05790, 20H00354, and 21H05233), and A3 Foresight by JSPS. |
Corresponding Authors:
Guangyu Zhang, Wei Yang
E-mail: gyzhang@iphy.ac.cn;wei.yang@iphy.ac.cn
|
Cite this article:
Yalong Yuan(袁亚龙), Yanbang Chu(褚衍邦), Cheng Hu(胡成), Jinpeng Tian(田金朋), Le Liu(刘乐), Fanfan Wu(吴帆帆), Yiru Ji(季怡汝), Jiaojiao Zhao(赵交交), Zhiheng Huang(黄智恒), Xiaozhou Zan(昝晓洲), Luojun Du(杜罗军), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Zhiwen Shi(史志文), Wei Yang(杨威), and Guangyu Zhang(张广宇) Epitaxial growth of trilayer graphene moiré superlattice 2023 Chin. Phys. B 32 077304
|
[1] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 [2] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [3] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653 [4] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G 2020 Nat. Phys. 16 520 [5] Kim H, Choi Y, Lewandowski C, Thomson A, Zhang Y, Polski R, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2022 Nature 606 494 [6] Park J M, Cao Y, Xia L Q, Sun S W, Watanabe K, Taniguchi T and Jarillo-Herrero P 2022 Nat. Mater. 21 877 [7] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y and Wang F 2020 Nature 579 56 [8] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [9] Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021 [10] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059 [11] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2020 Nature 583 215 [12] He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X and Yankowitz M 2020 Nat. Phys. 17 26 [13] Lisi S, Lu X, Benschop T, et al. 2020 Nat. Phys. 17 189 [14] Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2020 Nature 583 221 [15] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H and Young A F 2020 Nature 588 66 [16] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [17] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 590 249 [18] Liu L, Zhang S, Chu Y, Shen C, Huang Y, Yuan Y, Tian J, Tang J, Ji Y, Yang R, Watanabe K, Taniguchi T, Shi D, Liu J, Yang W and Zhang G 2022 Nat. Commun. 13 3292 [19] Chu Y, Liu L, Shen C, Tian J, Tang J, Zhao Y, Liu J, Yuan Y, Ji Y, Yang R, Watanabe K, Taniguchi T, Shi D, Wu F, Yang W and Zhang G 2022 Phys. Rev. B 106 035107 [20] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y and Wang F 2019 Nat. Phys. 15 237 [21] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y and Wang F 2019 Nature 572 215 [22] Chittari B L, Chen G, Zhang Y, Wang F and Jung J 2019 Phys. Rev. Lett. 122 016401 [23] Zhou H X, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M and Young A F 2021 Nature 598 429 [24] Zhou H X, Xie T, Taniguchi T, Watanabe K and Young A F 2021 Nature 598 434 [25] Liu D, Yang W, Zhang L, Zhang J, Meng J, Yang R, Zhang G and Shi D X 2014 Carbon 72 387 [26] Zhang L, Ni M, Liu D, Shi D and Zhang G 2012 J. Phys. Chem. C 116 26929 [27] Zhang L, Shi Z, Liu D, Yang R, Shi D and Zhang G 2012 Nano Res. 5 258 [28] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y and Zhang G 2013 Nat. Mater. 12 792 [29] Yang W, Lu X, Chen G, Wu S, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Voisin C, Placais B, Zhang Y and Zhang G 2016 Nano Lett. 16 2387 [30] Lu X, Tang J, Wallbank J R, Wang S, Shen C, Wu S, Chen P, Yang W, Zhang J, Watanabe K, Taniguchi T, Yang R, Shi D, Efetov D K, Fal'ko V I and Zhang G 2020 Phys. Rev. B 102 045409 [31] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614 [32] Jhang S H, Craciun M F, Schmidmeier S, Tokumitsu S, Russo S, Yamamoto M, Skourski Y, Wosnitza J, Tarucha S, Eroms J and Strunk C 2011 Phys. Rev. B 84 161408 [33] Bao W, Jing L, Velasco J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E, Bockrath M and Lau C N 2011 Nat. Phys. 7 948 [34] Zou K, Zhang F, Clapp C, MacDonald A H and Zhu J 2013 Nano Lett. 13 369 [35] Taychatanapat T, Watanabe K, Taniguchi T and Jarillo-Herrero P 2011 Nat. Phys. 7 621 [36] Craciun M F, Russo S, Yamamoto M, Oostinga J B, Morpurgo A F and Tarucha S 2009 Nat. Nanotechnol. 4 383 [37] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598 [38] Yuan S, Roldán R and Katsnelson M I 2011 Phys. Rev. B 84 125455 [39] Datta B, Agarwal H, Samanta A, Ratnakar A, Watanabe K, Taniguchi T, Sensarma R and Deshmukh M M 2018 Phys. Rev. Lett. 121 056801 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|