Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 077304    DOI: 10.1088/1674-1056/accdc8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Epitaxial growth of trilayer graphene moiré superlattice

Yalong Yuan(袁亚龙)1,2, Yanbang Chu(褚衍邦)1,2, Cheng Hu(胡成)3,4, Jinpeng Tian(田金朋)1,2, Le Liu(刘乐)1,2, Fanfan Wu(吴帆帆)1,2, Yiru Ji(季怡汝)1,2, Jiaojiao Zhao(赵交交)1,2, Zhiheng Huang(黄智恒)1,2, Xiaozhou Zan(昝晓洲)1,2, Luojun Du(杜罗军)1,2, Kenji Watanabe5, Takashi Taniguchi6, Dongxia Shi(时东霞)1,2,3, Zhiwen Shi(史志文)3,4, Wei Yang(杨威)1,2,7,‡, and Guangyu Zhang(张广宇)1,2,7,†
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
4 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China;
5 Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan;
6 International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan;
7 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The graphene-based moiré superlattice has been demonstrated as an exciting system for investigating strong correlation phenomenon. However, the fabrication of such moiré superlattice mainly relies on transfer technology. Here, we report the epitaxial growth of trilayer graphene (TLG) moiré superlattice on hexagonal boron nitride (hBN) by a remote plasma-enhanced chemical vapor deposition method. The as-grown TLG/hBN shows a uniform moiré pattern with a period of ~ 15 nm by atomic force microscopy (AFM) imaging, which agrees with the lattice mismatch between graphene and hBN. By fabricating the device with both top and bottom gates, we observed a gate-tunable bandgap at charge neutral point (CNP) and displacement field tunable satellite resistance peaks at half and full fillings. The resistance peak at half-filling indicates a strong electron-electron correlation in our grown TLG/hBN superlattice. In addition, we observed quantum Hall states at Landau level filling factors ν = 6, 10, 14, ..., indicating that our grown trilayer graphene has the ABC stacking order. Our work suggests that epitaxy provides an easy way to fabricate stable and reproducible two-dimensional strongly correlated electronic materials.
Keywords:  epitaxial growth      ABC-TLG/hBN moiré      superlattice      electron correlations  
Received:  23 February 2023      Revised:  12 April 2023      Accepted manuscript online:  18 April 2023
PACS:  73.21.Cd (Superlattices)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  72.80.Vp (Electronic transport in graphene)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309600), the National Natural Science Foundation of China (Grant Nos. 61888102, 11834017, and 12074413), the Strategic Priority Research Program of CAS (Grant Nos. XDB30000000 and XDB33000000), and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101340001). K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (Grant No. JPMXP0112101001), JSPS KAKENHI (Grant Nos. 19H05790, 20H00354, and 21H05233), and A3 Foresight by JSPS.
Corresponding Authors:  Guangyu Zhang, Wei Yang     E-mail:  gyzhang@iphy.ac.cn;wei.yang@iphy.ac.cn

Cite this article: 

Yalong Yuan(袁亚龙), Yanbang Chu(褚衍邦), Cheng Hu(胡成), Jinpeng Tian(田金朋), Le Liu(刘乐), Fanfan Wu(吴帆帆), Yiru Ji(季怡汝), Jiaojiao Zhao(赵交交), Zhiheng Huang(黄智恒), Xiaozhou Zan(昝晓洲), Luojun Du(杜罗军), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Zhiwen Shi(史志文), Wei Yang(杨威), and Guangyu Zhang(张广宇) Epitaxial growth of trilayer graphene moiré superlattice 2023 Chin. Phys. B 32 077304

[1] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[2] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[3] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653
[4] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G 2020 Nat. Phys. 16 520
[5] Kim H, Choi Y, Lewandowski C, Thomson A, Zhang Y, Polski R, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2022 Nature 606 494
[6] Park J M, Cao Y, Xia L Q, Sun S W, Watanabe K, Taniguchi T and Jarillo-Herrero P 2022 Nat. Mater. 21 877
[7] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y and Wang F 2020 Nature 579 56
[8] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[9] Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021
[10] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059
[11] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2020 Nature 583 215
[12] He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X and Yankowitz M 2020 Nat. Phys. 17 26
[13] Lisi S, Lu X, Benschop T, et al. 2020 Nat. Phys. 17 189
[14] Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2020 Nature 583 221
[15] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H and Young A F 2020 Nature 588 66
[16] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
[17] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 590 249
[18] Liu L, Zhang S, Chu Y, Shen C, Huang Y, Yuan Y, Tian J, Tang J, Ji Y, Yang R, Watanabe K, Taniguchi T, Shi D, Liu J, Yang W and Zhang G 2022 Nat. Commun. 13 3292
[19] Chu Y, Liu L, Shen C, Tian J, Tang J, Zhao Y, Liu J, Yuan Y, Ji Y, Yang R, Watanabe K, Taniguchi T, Shi D, Wu F, Yang W and Zhang G 2022 Phys. Rev. B 106 035107
[20] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y and Wang F 2019 Nat. Phys. 15 237
[21] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y and Wang F 2019 Nature 572 215
[22] Chittari B L, Chen G, Zhang Y, Wang F and Jung J 2019 Phys. Rev. Lett. 122 016401
[23] Zhou H X, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M and Young A F 2021 Nature 598 429
[24] Zhou H X, Xie T, Taniguchi T, Watanabe K and Young A F 2021 Nature 598 434
[25] Liu D, Yang W, Zhang L, Zhang J, Meng J, Yang R, Zhang G and Shi D X 2014 Carbon 72 387
[26] Zhang L, Ni M, Liu D, Shi D and Zhang G 2012 J. Phys. Chem. C 116 26929
[27] Zhang L, Shi Z, Liu D, Yang R, Shi D and Zhang G 2012 Nano Res. 5 258
[28] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y and Zhang G 2013 Nat. Mater. 12 792
[29] Yang W, Lu X, Chen G, Wu S, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Voisin C, Placais B, Zhang Y and Zhang G 2016 Nano Lett. 16 2387
[30] Lu X, Tang J, Wallbank J R, Wang S, Shen C, Wu S, Chen P, Yang W, Zhang J, Watanabe K, Taniguchi T, Yang R, Shi D, Efetov D K, Fal'ko V I and Zhang G 2020 Phys. Rev. B 102 045409
[31] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614
[32] Jhang S H, Craciun M F, Schmidmeier S, Tokumitsu S, Russo S, Yamamoto M, Skourski Y, Wosnitza J, Tarucha S, Eroms J and Strunk C 2011 Phys. Rev. B 84 161408
[33] Bao W, Jing L, Velasco J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E, Bockrath M and Lau C N 2011 Nat. Phys. 7 948
[34] Zou K, Zhang F, Clapp C, MacDonald A H and Zhu J 2013 Nano Lett. 13 369
[35] Taychatanapat T, Watanabe K, Taniguchi T and Jarillo-Herrero P 2011 Nat. Phys. 7 621
[36] Craciun M F, Russo S, Yamamoto M, Oostinga J B, Morpurgo A F and Tarucha S 2009 Nat. Nanotechnol. 4 383
[37] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598
[38] Yuan S, Roldán R and Katsnelson M I 2011 Phys. Rev. B 84 125455
[39] Datta B, Agarwal H, Samanta A, Ratnakar A, Watanabe K, Taniguchi T, Sensarma R and Deshmukh M M 2018 Phys. Rev. Lett. 121 056801
[1] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[4] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[11] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[12] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[13] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[14] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[15] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
No Suggested Reading articles found!