|
|
Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current |
Hao-Nan Cui(崔浩楠)1,2,3, Guang-Yu Zhu(祝光宇)2,3, Jian-Kun Wang(王建坤)2,3, Jia-Jie Yang(杨佳洁)2,3, Wen-Zhuang Zheng(郑文壮)1, Ben-Chuan Lin(林本川)2,3,4,†, Zhi-Min Liao(廖志敏)1,‡, Shuo Wang(王硕)2,3,4,§, and Da-Peng Yu(俞大鹏)2,3,4 |
1 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China; 2 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 3 International Quantum Academy, Shenzhen 518048, China; 4 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract Topological insulators and semimetals have exotic surface and bulk states with massless Dirac or Weyl fermions, demonstrating microscopic transport phenomenon based on relativistic theory. Chiral anomaly induced negative magnetoresistance (negative MR) under parallel magnetic field and current has been used as a probable evidence of Weyl fermions in recent years. Here we report a novel negative MR result with mutually perpendicular in-plane magnetic field and current in Cd3As2 nanowires. The negative MR has a considerable value of -16% around 1.5 K and could persist to room temperature of 300 K with value of -1%. The gate tuning and angle dependence of the negative MR demonstrate the mechanism of the observed negative MR is different from the chiral anomaly. Percolating current paths induced by charge puddles and disorder might be involved to produce such considerable negative MR. Our results indicate the negative MR effect in topological semimetals involves synergistic effects of many mechanisms besides chiral anomaly.
|
Received: 14 March 2023
Revised: 09 April 2023
Accepted manuscript online: 16 April 2023
|
PACS:
|
73.43.Qt
|
(Magnetoresistance)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12004158, 12074162, and 91964201), the National Key Research and Development Program of China (Grant Nos. 2022YFA1403700 and 2020YFA0309300), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2018B030327001), Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515130005). |
Corresponding Authors:
Ben-Chuan Lin, Zhi-Min Liao, Shuo Wang
E-mail: linbc@sustech.edu.cn;liaozm@pku.edu.cn;wangs6@sustech.edu.cn
|
Cite this article:
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏) Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current 2023 Chin. Phys. B 32 077305
|
[1] Dmitriev A, Dyakonov M and Jullien R 2001 Phys. Rev. B 64 233321 [2] Lv B Q, Qian T and Ding H 2021 Rev. Mod. Phys. 93 025002 [3] Andrei N, Furuya K and Lowenstein J H 1983 Rev. Mod. Phys. 55 331 [4] Hanaki Y, Ando Y, Ono S and Takeya J 2001 Phys. Rev. B 64 172514 [5] Ramirez A P 1997 J. Phys.: Condens. Matter 9 8171 [6] Lu H Z and Shen S Q 2017 Frontiers of Physics 12 127201 [7] Dai X, Du Z Z and Lu H Z 2017 Phys. Rev. Lett. 119 166601 [8] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 [9] Ali M N, Gibson Q, Jeon S, Zhou B B, Yazdani A and Cava R J 2014 Inorg. Chem. 53 4062 [10] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280 [11] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677 [12] Wang Z, Weng H, Wu Q, Dai X and Fang Z T 2013 Phys. Rev. B 88 125427 [13] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864 [14] Nielsen H B and Ninomiya M 1983 Phys. Lett. B 130 389 [15] Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301 [16] Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137 [17] Li H, Wang H W, He H, Wang J and Shen S Q 2018 Phys. Rev. B 97 201110 [18] Wu M, Zheng G, Chu W, Liu Y, Gao W, Zhang H, Lu J, Han Y, Zhou J, Ning W and Tian M 2018 Phys. Rev. B 98 161110 [19] Liang S, Lin J, Kushwaha S, Xing J, Ni N, Cava R J and Ong N P 2018 Phys. Rev. X 8 031002 [20] Zhao B, Cheng P, Pan H, Zhang S, Wang B, Wang G, Xiu F X and Song F Q 2016 Sci. Rep. 6 22377 [21] Zheng W Z, Ye X G, Lin B C, Li R R, Yu D P and Liao Z M 2019 Appl. Phys. Lett. 115 183103 [22] Yadav R, Bhattacharyya B, Pandey A, Kaur M, Aloysius R P, Gupta A and Husale S 2020 J. Phys.: Condens. Matter 33 085301 [23] Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A and Yazdani A 2014 Nat. Mater. 13 851 [24] Jiang H W, Johnson C E and Wang K L 1992 Phys. Rev. B 46 12830 [25] Liao J, Ou Y, Feng X, Yang S, Lin C, Yang W, Wu K, He K, Ma X, Xue Q K and Li Y 2015 Phys. Rev. Lett. 114 216601 [26] Ishida S, Takeda K, Okamoto A and Shibasaki I 2004 Physica E 20 255 [27] Wang L X, Yan Y, Zhang L, Liao Z M, Wu H C and Yu D P 2015 Nanoscale 7 16687 [28] Banerjee K, Son J, Deorani P, Ren P, Wang L and Yang H 2014 Phys. Rev. B 90 235427 [29] Bhattacharyya B, Singh B, Aloysius R P, Yadav R, Su C, Lin H, Auluck S, Gupta A, Senguttuvan T D and Husale S 2019 Sci. Rep. 9 7836 [30] Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A and Ando Y 2017 Nat. Commun. 8 1340 [31] Cui Y, Chu Y, Pan Z, Xing Y, Huang S and Xu H 2021 Nanoscale 13 20417 [32] Breunig O, Wang Z, Taskin A A, Lux J, Rosch A and Ando Y 2017 Nat. Commun. 8 15545 [33] Miyazaki Y, Yokouchi T, Shibata K, Chen Y, Arisawa H, Mizoguchi T, Saitoh E and Shiomi Y 2022 Phys. Rev. Res. 4 L022002 [34] Pan H, Zhang K, Wei Z, Zhao B, Wang J, Gao M, Pi L, Han M, Song F, Wang X, Wang B and Zhang R 2016 Appl. Phys. Lett. 108 183103 [35] Singh R, Gangwar V K, Daga D D, Singh A, Ghosh A K, Kumar M, Lakhani A, Singh R and Chatterjee S 2018 Appl. Phys. Lett. 112 102401 [36] Schonherr P and Hesjedal T 2015 Appl. Phys. Lett. 106 013115 [37] Zheng W Z, Zhao T Y, Wang A Q, Xu D Y, Xiang P Z, Ye X G and Liao Z M 2021 Phys. Rev. B 104 155140 [38] Cao J, Liang S, Zhang C, Liu Y, Huang J, Jin Z, Chen Z G, Wang Z, Wang Q, Zhao J, Li S, Dai X, Zou J, Xia Z, Li L and Xiu F X 2015 Nat. Commun. 6 7779 [39] Hu J, Rosenbaum T F and Betts J B 2005 Phys. Rev. Lett. 95 186603 [40] Schumann T, Goyal M, Kealhofer D A and Stemmer S 2017 Phys. Rev. B 95 241113 [41] Xu J, Ma M K, Sultanov M, Xiao Z L, Wang Y L, Jin D, Lyu Y Y, Zhang W, Pfeiffer L N, West K W, Baldwin K W, Shayegan M and Kwok W K 2019 Nat. Commun. 10 287 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|