|
|
Generation of quasi-chirp-free isolated attosecond pulses from atoms under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields |
Rui-Xian Yu(蔚瑞贤)1,2, Yue Qiao(乔月)1,2, Ping Li(李萍)1,2, Jun Wang(王俊)1,2, Ji-Gen Chen(陈基根)3, Wei Feng(冯伟)1,2,†, Fu-Ming Guo(郭福明)1,2,‡, and Yu-Jun Yang(杨玉军)1,2,§ |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy(Jilin University), Changchun 130012, China; 3 Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 31800, China |
|
|
Abstract The intrinsic chirp of high-order harmonic generation is an important factor limiting the production of ultrashort attosecond pulses. Based on numerically solving the time-dependent Schrödinger equation, the generation process of high-order harmonic from the He atom under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields is studied. In this paper, we propose to achieve quasi-chirp-free isolated attosecond pulses by superimposing a higher second-harmonic field on the orthogonal direction of the fundamental frequency field. It is found that the high-energy part of its harmonic emission exhibits small chirp characteristics, which can be used to synthesize isolated attosecond pulses. Through the analysis of the wave packets evolution and the classical motion trajectories of the electron, it is demonstrated that the quasi-chirp-free harmonic can be attributed to the simultaneous return of electrons ionized at different times to the parent particle. The influence of the relative phase of the two pulses on the harmonics is further analyzed, and it is observed that this phenomenon is sensitive to the relative phase, but it can still generate isolated attosecond pulses within a certain phase.
|
Received: 20 February 2023
Revised: 17 March 2023
Accepted manuscript online: 28 March 2023
|
PACS:
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307700), the National Natural Science Foundation of China (Grant Nos. 12074145, 11627807, and 11975012), the Research Foundation for Basic Research of Jilin Province, China (Grant No. 20220101003JC), the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), and the Outstanding Youth Project of Taizhou University (Grant No. 2019JQ002). We acknowledge the High Performance Computing Center of Jilin University for supercomputer time. |
Corresponding Authors:
Wei Feng, Fu-Ming Guo, Yu-Jun Yang
E-mail: fengw@jlu.edu.cn;guofm@jlu.edu.cn;yangyj@jlu.edu.cn
|
Cite this article:
Rui-Xian Yu(蔚瑞贤), Yue Qiao(乔月), Ping Li(李萍), Jun Wang(王俊), Ji-Gen Chen(陈基根), Wei Feng(冯伟), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军) Generation of quasi-chirp-free isolated attosecond pulses from atoms under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields 2023 Chin. Phys. B 32 063302
|
[1] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [2] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389 [3] Telnov D A, Heslar J and Chu S I 2017 Phys. Rev. A 95 043425 [4] Heslar J, Telnov D A and Chu S I 2017 Phys. Rev. A 96 063404 [5] Qiao Y, Huo Y Q, Liang H Q, Chen J G, Liu W J, Yang Y J and Jiang S C 2023 Phys. Rev. B 107 075201 [6] Yu C, Jiang S C and Lu R F2019 Adv. Phys. X 4 1562982 [7] Qiao Y, Chen J Q, Huo Y Q, Liang H Q, Yu R X, Chen J G, Liu W J, Jiang S C and Yang Y J 2023 Phys. Rev. A 107 023523 [8] Wu T, Qian C, Wang Z S, Zhang X Y, Yu C and Lu R F2022 Acta Photon. Sin. 51 0851515 [9] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595 [10] Qiao Y, Wu D, Chen J G, Wang J, Guo F M and Yang Y J 2019 Phys. Rev. A 100 063428 [11] Qiao Y, Huo Y Q, Jiang S C, Yang Y J and Chen J G 2022 Opt. Express 30 9971 [12] Odžak S, Hasović E and Milošević D B 2016 Phys. Rev. A 94 033419 [13] Li P, Gao N, Yu R X, Wang J, Li S Y, Guo F M and Yang Y J 2022 Chin. Phys. B 31 103303 [14] Qiao Y, Chen J Q and Chen J G 2022 Symmetry 14 2646 [15] Zhou S S, Lan W D, Chen J G, Wang J, Guo F M and Yang Y J 2022 Phys. Rev. A 106 023510 [16] Yan J Z, Zhao S S, Lan W D, Li S Y, Zhou S S, Chen J G, Zhang J Y and Yang Y J 2022 Opt. Express 30 35444 [17] Haight R and Seidler P F 1994 Appl. Phys. Lett. 65 517 [18] Sandhu A S, Gagnon E, Santra R, Sharma V, Li W, Ho P, Ranitovic P, Cocke C L, Murnane M M and Kapteyn H C 2008 Science 322 1081 [19] Siemens M E, Li Q, Yang R, Nelson K A, Anderson E H, Murnane M M and Kapteyn H C 2010 Nat. Mater. 9 26 [20] La-O-Vorakiat C, Siemens M, Murnane M M, Kapteyn H C, Mathias S, Aeschlimann M, Grychtol P, Adam R, Schneider C M, Shaw J M, Nembach H and Silva T J 2009 Phys. Rev. Lett. 103 257402 [21] Sandberg R L, Raymondson D A, o vorakiat C L, Paul A, Raines K S, Miao J, Murnane M M, Kapteyn H C and Schlotter W F 2009 Opt. Lett. 34 1618 [22] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509 [23] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M and Chang Z H2017 Nat. Commun. 8 186 [24] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689 [25] Mairesse Y, De Bohan A, Frasinski L, Merdji H, Dinu L, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B, Mulle H, Agostini P and Saliéres P 2003 Science 302 1540 [26] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [27] Schafer K J, Yang B, DiMauro L F and Kulander K C 1993 Phys. Rev. Lett. 70 1599 [28] Sekikawa T, Ohno T, Yamazaki T, Nabekawa Y and Watanabe S 1999 Phys. Rev. Lett. 83 2564 [29] Popmintchev T, Chen M C, Popmintchev D, et al. 2012 Science 336 1287 [30] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F and Wörner H J 2017 Opt. Express 25 27506 [31] Morlens A S, Balcou P, Zeitoun P, Valentin C, Laude V and Kazamias S 2005 Opt. Lett. 30 1554 [32] Kim K T, Kim C M, Baik M G, Umesh G and Nam C H 2004 Phys. Rev. A 69 051805 [33] Lopez-Martens R, Varjú K, Johnsson P, Mauritsson J, Mairesse Y, Salieres P, Gaarde M B, Schafer K J, Persson A, Svanberg S, Claes-G?ran W and L'Huillier A 2005 Phys. Rev. Lett. 94 033001 [34] Ko D H, Kim K T, Park J, Lee J h and Nam C H 2010 New J. Phys. 12 063008 [35] Kim K T, Kang K S, Park M N, Imran T, Umesh G and Nam C H 2007 Phys. Rev. Lett. 99 223904 [36] Zou P, Zeng Z N, Zheng Y H, Lu Y Y, Liu P, Li R X and Xu Z Z 2010 Phys. Rev. A 81 033428 [37] Kohler M C, Keitel C H and Hatsagortsyan K Z 2011 Opt. Express 19 4411 [38] Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M and Yang Y J 2015 Phys. Rev. A 92 033848 [39] Jia C, Wang J, Li Q Y, Guo F M, Chen J G, Zeng S L and Yang Y J 2015 Opt. Express 23 32222 [40] Balogh E, Kovacs K, Dombi P, Fulop J A, Farkas G, Hebling J, Tosa V and Varju K 2011 Phys. Rev. A 84 023806 [41] Yuan K J and Bandrauk A D 2013 Phys. Rev. Lett. 110 023003 [42] Ge X L, Du H, Guo J and Liu X S2015 Opt. Lett. 23 8837 [43] Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J and Nam C H 2005 Phys. Rev. Lett. 94 243901 [44] Kim C M, Kim I J and Nam C H 2005 Phys. Rev. A 72 033817 [45] Zheng Y H, Zeng Z N, Zou P, Zhang L, Li X F, Liu P, Li R X and Xu Z Z 2009 Phys. Rev. Lett. 103 043904 [46] Wang J, Chen G, Guo F M, Li S Y, Chen J G and Yang Y J 2013 Chin. Phys. B 22 033203 [47] Yang Y J, Chen J G, Huang Y X, Guo F M, Zhang H X, Sun J Z, Zhu H Y, Li W, Wang H and Zhu Q R 2007 Chin. Phys. Lett. 24 1894 [48] Guo F M, Yang Y J, Jin M X, Ding D J and Zhu Q R 2009 Chin. Phys. Lett. 26 053201 [49] Kazamias S and Balcou P 2004 Phys. Rev. A 69 063416 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|