Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 123202    DOI: 10.1088/1674-1056/ac6b2c
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Multiple collisions in crystal high-order harmonic generation

Dong Tang(唐栋)1,2 and Xue-Bin Bian(卞学滨)1,†
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We theoretically investigate high-order harmonic generation (HHG) in crystals induced by linearly polarized laser fields. We obtain the HHG spectra by solving the semiconductor Bloch equations and analyze the radiation process by different models. Here we propose a multiple collision model, in which the electrons and holes are produced at different times and places. It is found that the multiple collision trajectories can help us comprehensively and better explain the results of the quantum calculation. Moreover, we find that the harmonic suppression occurs due to the overlap of multiple collision trajectories.
Keywords:  high-order harmonic generation      ultrafast optics      Bloch electron dynamics  
Received:  21 March 2022      Revised:  13 April 2022      Accepted manuscript online:  28 April 2022
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91850121) and the K. C. Wong Education Foundation (Grant No. GJTD-2019-15).
Corresponding Authors:  Xue-Bin Bian     E-mail:  xuebin.bian@wipm.ac.cn

Cite this article: 

Dong Tang(唐栋) and Xue-Bin Bian(卞学滨) Multiple collisions in crystal high-order harmonic generation 2022 Chin. Phys. B 31 123202

[1] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[2] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[3] Paulus G G, Zacher F, Walther H, Lohr A, Becker W and Kleber M 1998 Phys. Rev. Lett. 80 484
[4] Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J and Nam C H 2005 Phys. Rev. Lett. 94 243901
[5] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[6] Zhang H D, Guo J, Shi Y, Du H, Liu H F, Huang X R, Liu X S and Jing J 2017 Chin. Phys. Lett. 34 014206
[7] Xia C L and Miao X Y 2015 Chin. Phys. B 24 043202
[8] Shen X X, Wang J, Guo F M, Chen J G and Yang Y J 2020 Chin. Phys. B 29 083201
[9] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A 2011 Nat. Phys. 7 138
[10] Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W and Huber R 2014 Nat. Photon. 8 119
[11] Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T and Goulielmakis E 2015 Nature 521 498
[12] Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T and Corkum P B 2015 Nature 522 462
[13] Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B and Reis D A 2016 Nature 534 520
[14] Guan Z Z, Liu L, Wang G L, Zhao S F, Jiao Z H and Zhou X X 2020 Chin. Phys. B 29 104206
[15] Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D and Corkum P B 2015 Phys. Rev. Lett. 115 193603
[16] Garg M, Kim H Y and Goulielmakis E 2018 Nat. Photon. 12 291
[17] Stehlik J, Maialle M Z, Degani M H and Petta J R 2016 Phys. Rev. B 94 075307
[18] Kruchinin S Y, Krausz F and Yakovlev V S 2018 Rev. Mod. Phys. 90 021002
[19] Golde D, Meier T and Koch S W 2008 Phys. Rev. B 77 075330
[20] Higuchi T, Stockman M I and Hommelhoff P 2014 Phys. Rev. Lett. 113 213901
[21] Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B and Brabec T 2014 Phys. Rev. Lett. 113 073901
[22] Hawkins P G, Ivanov M Y and Yakovlev V S 2015 Phys. Rev. A 91 013405
[23] Vampa G, McDonald C R, Orlando G, Corkum P B and Brabec T 2015 Phys. Rev. B 91 064302
[24] Wang Z, Park H, Lai Y H, Xu J, Blaga C I, Yang F, Agostini P and DiMauro L F 2017 Nat. Commun. 8 1686
[25] Navarrete F, Ciappina M F and Thumm U 2019 Phys. Rev. A 100 033405
[26] Uzan A J, Orenstein G, Jiménez-Galán Á, McDonald C, Silva R E F, Bruner B D, Klimkin N D, Blanchet V, Arusi-Parpar T, Kruger M, Rubtsov A N, Smirnova O, Ivanov M, Yan B, Brabec T and Dudovich N 2020 Nat. Photon. 14 183
[27] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[28] Tancogne-Dejean N, Mucke O D, Kartner F X and Rubio A 2017 Nat. Commun. 8 745
[29] Yu C, Iravani H and Madsen L B 2020 Phys. Rev. A 102 033105
[30] Wu M, Ghimire S, Reis D A, Schafer K J and Gaarde M B 2015 Phys. Rev. A 91 043839
[31] Guan Z, Zhou X X and Bian X B 2016 Phys. Rev. A 93 033852
[32] Du T Y and Bian X B 2017 Opt. Express 25 151
[33] Ikemachi T, Shinohara Y, Sato T, Yumoto J, Kuwata-Gonokami M and Ishikawa K L 2017 Phys. Rev. A 95 043416
[34] Li L, Lan P, Zhu X, Huang T, Zhang Q, Lein M and Lu P 2019 Phys. Rev. Lett. 122 193901
[35] Li J B, Zhang X, Yue S J, Wu H M, Hu B T and Du H C 2017 Opt. Express 25 18603
[36] McDonald C R, Vampa G, Corkum P B and Brabec T 2015 Phys. Rev. A 92 033845
[37] Zhang X, Li J, Zhou Z, Yue S, Du H, Fu L and Luo H G 2019 Phys. Rev. B 99 014304
[38] Yue L and Gaarde M B 2020 Phys. Rev. Lett. 124 153204
[39] Fu S L, Feng Y K, Li J B, Yue S J, Zhang X, Hu B T and Du H C 2020 Phys. Rev. A 101 023402
[40] Feng Y K, Shi S X, Li J B, Ren Y J, Zhang X, Chen J H and Du H C 2021 Phys. Rev. A 104 043525
[41] Parks A M, Ernotte G, Thorpe A, McDonald C R, Corkum P B, Taucer M and Brabec T 2020 Optica 7 1764
[42] Zaks B, Liu R B and Sherwin M S 2012 Nature 483 580
[43] Yue L and Gaarde M B 2021 Phys. Rev. A. 103 063105
[44] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903
[45] Jin J Z, Liang H, Xiao X R, Wang M X, Chen S G, Wu X Y, Gong Q and Peng L Y 2018 J. Phys. B 51 16LT01
[46] Du T Y, Tang D and Bian X B 2018 Phys. Rev. A 98 063416
[47] Keldysh L V 1965 Sov. Phys. JETP 20 1307
[48] Chirila C C, Dreissigacker I, van der Zwan E V and Lein M 2010 Phys. Rev. A 81 033412
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[4] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[5] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[6] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[7] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[8] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[9] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[10] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[11] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[12] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[13] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[14] Minimum structure of high-harmonic spectrafrom aligned O2 and N2 molecules
Bo Yan(闫博), Yi-Chen Wang(王一琛), Qing-Hua Gao(高庆华), Fang-Jing Cheng(程方晶), Qiu-Shuang Jing(景秋霜), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2021, 30(11): 114213.
[15] Role of potential on high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser fields
Xu-Xu Shen(申许许), Jun Wang(王俊), Fu-Ming Guo(郭福明), Ji-Gen Chen(陈基根), Yun-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(8): 083201.
No Suggested Reading articles found!