|
|
Multiple collisions in crystal high-order harmonic generation |
Dong Tang(唐栋)1,2 and Xue-Bin Bian(卞学滨)1,† |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We theoretically investigate high-order harmonic generation (HHG) in crystals induced by linearly polarized laser fields. We obtain the HHG spectra by solving the semiconductor Bloch equations and analyze the radiation process by different models. Here we propose a multiple collision model, in which the electrons and holes are produced at different times and places. It is found that the multiple collision trajectories can help us comprehensively and better explain the results of the quantum calculation. Moreover, we find that the harmonic suppression occurs due to the overlap of multiple collision trajectories.
|
Received: 21 March 2022
Revised: 13 April 2022
Accepted manuscript online: 28 April 2022
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91850121) and the K. C. Wong Education Foundation (Grant No. GJTD-2019-15). |
Corresponding Authors:
Xue-Bin Bian
E-mail: xuebin.bian@wipm.ac.cn
|
Cite this article:
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨) Multiple collisions in crystal high-order harmonic generation 2022 Chin. Phys. B 31 123202
|
[1] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [2] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [3] Paulus G G, Zacher F, Walther H, Lohr A, Becker W and Kleber M 1998 Phys. Rev. Lett. 80 484 [4] Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J and Nam C H 2005 Phys. Rev. Lett. 94 243901 [5] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [6] Zhang H D, Guo J, Shi Y, Du H, Liu H F, Huang X R, Liu X S and Jing J 2017 Chin. Phys. Lett. 34 014206 [7] Xia C L and Miao X Y 2015 Chin. Phys. B 24 043202 [8] Shen X X, Wang J, Guo F M, Chen J G and Yang Y J 2020 Chin. Phys. B 29 083201 [9] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A 2011 Nat. Phys. 7 138 [10] Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W and Huber R 2014 Nat. Photon. 8 119 [11] Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T and Goulielmakis E 2015 Nature 521 498 [12] Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T and Corkum P B 2015 Nature 522 462 [13] Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B and Reis D A 2016 Nature 534 520 [14] Guan Z Z, Liu L, Wang G L, Zhao S F, Jiao Z H and Zhou X X 2020 Chin. Phys. B 29 104206 [15] Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D and Corkum P B 2015 Phys. Rev. Lett. 115 193603 [16] Garg M, Kim H Y and Goulielmakis E 2018 Nat. Photon. 12 291 [17] Stehlik J, Maialle M Z, Degani M H and Petta J R 2016 Phys. Rev. B 94 075307 [18] Kruchinin S Y, Krausz F and Yakovlev V S 2018 Rev. Mod. Phys. 90 021002 [19] Golde D, Meier T and Koch S W 2008 Phys. Rev. B 77 075330 [20] Higuchi T, Stockman M I and Hommelhoff P 2014 Phys. Rev. Lett. 113 213901 [21] Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B and Brabec T 2014 Phys. Rev. Lett. 113 073901 [22] Hawkins P G, Ivanov M Y and Yakovlev V S 2015 Phys. Rev. A 91 013405 [23] Vampa G, McDonald C R, Orlando G, Corkum P B and Brabec T 2015 Phys. Rev. B 91 064302 [24] Wang Z, Park H, Lai Y H, Xu J, Blaga C I, Yang F, Agostini P and DiMauro L F 2017 Nat. Commun. 8 1686 [25] Navarrete F, Ciappina M F and Thumm U 2019 Phys. Rev. A 100 033405 [26] Uzan A J, Orenstein G, Jiménez-Galán Á, McDonald C, Silva R E F, Bruner B D, Klimkin N D, Blanchet V, Arusi-Parpar T, Kruger M, Rubtsov A N, Smirnova O, Ivanov M, Yan B, Brabec T and Dudovich N 2020 Nat. Photon. 14 183 [27] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 [28] Tancogne-Dejean N, Mucke O D, Kartner F X and Rubio A 2017 Nat. Commun. 8 745 [29] Yu C, Iravani H and Madsen L B 2020 Phys. Rev. A 102 033105 [30] Wu M, Ghimire S, Reis D A, Schafer K J and Gaarde M B 2015 Phys. Rev. A 91 043839 [31] Guan Z, Zhou X X and Bian X B 2016 Phys. Rev. A 93 033852 [32] Du T Y and Bian X B 2017 Opt. Express 25 151 [33] Ikemachi T, Shinohara Y, Sato T, Yumoto J, Kuwata-Gonokami M and Ishikawa K L 2017 Phys. Rev. A 95 043416 [34] Li L, Lan P, Zhu X, Huang T, Zhang Q, Lein M and Lu P 2019 Phys. Rev. Lett. 122 193901 [35] Li J B, Zhang X, Yue S J, Wu H M, Hu B T and Du H C 2017 Opt. Express 25 18603 [36] McDonald C R, Vampa G, Corkum P B and Brabec T 2015 Phys. Rev. A 92 033845 [37] Zhang X, Li J, Zhou Z, Yue S, Du H, Fu L and Luo H G 2019 Phys. Rev. B 99 014304 [38] Yue L and Gaarde M B 2020 Phys. Rev. Lett. 124 153204 [39] Fu S L, Feng Y K, Li J B, Yue S J, Zhang X, Hu B T and Du H C 2020 Phys. Rev. A 101 023402 [40] Feng Y K, Shi S X, Li J B, Ren Y J, Zhang X, Chen J H and Du H C 2021 Phys. Rev. A 104 043525 [41] Parks A M, Ernotte G, Thorpe A, McDonald C R, Corkum P B, Taucer M and Brabec T 2020 Optica 7 1764 [42] Zaks B, Liu R B and Sherwin M S 2012 Nature 483 580 [43] Yue L and Gaarde M B 2021 Phys. Rev. A. 103 063105 [44] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903 [45] Jin J Z, Liang H, Xiao X R, Wang M X, Chen S G, Wu X Y, Gong Q and Peng L Y 2018 J. Phys. B 51 16LT01 [46] Du T Y, Tang D and Bian X B 2018 Phys. Rev. A 98 063416 [47] Keldysh L V 1965 Sov. Phys. JETP 20 1307 [48] Chirila C C, Dreissigacker I, van der Zwan E V and Lein M 2010 Phys. Rev. A 81 033412 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|