Abstract Electron-impact single-ionization (EISI) cross sections for W (, 10) ions have been calculated by using the level-to-level distorted-wave (LLDW) method with emphasis on the contribution of metastable states to the total ionization cross sections. Contributions from direct-ionization (DI) and excitation-autoionization (EA) processes are taken into account. The calculated cross sections include the contributions from both the ground configuration and the long-lived metastable states with lifetimes exceeding 10 s. Calculated cross sections are in good agreement with experimental measurements when the influence of metastable states on the total ionization cross section are well considered.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404152) and Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2017-94).
Corresponding Authors:
Bowen Li
E-mail: libw@lzu.edu.cn
Cite this article:
Runjia Bao(鲍润家), Junkui Wei(魏军奎), Lei Chen(陈雷), Bowen Li(李博文), and Ximeng Chen(陈熙萌) Electron-impact ionization of W9+ and W10+ 2023 Chin. Phys. B 32 063401
[1] Federici G2006 Phys. Scr.T124 1 [2] Groth M, Brezinsek S, Belo P, Beurskens M N A, Brix M, Clever M, Coenen J W, Corrigan C, Eich T and Flanagan J2013 Nucl. Fusion53 093016 [3] Pitts R A, Carpentier S, Escourbiac F, Hirai T, Komarov V, Lisgo S, Kukushkin A S, Loarte A, Merola M, Sashala Naik A, Mitteau R, Sugihara M, Bazylev B and Stangeby P C2013 J. Nucl. Matt. 438 S48 [4] Putterich T, Neu R, Dux R, Whiteford A D, O'Mullane M and the ASDEX Upgrade Team2008 Plasma Phys. Control. Fusion50 085016 [5] Pütterich T, Neu R, Dux R, Whiteford A, O'Mullane M, Summers H and the ASDEX Upgrade Team2010 Nucl. Fusion50 025012 [6] Müller A2015 Atoms3 120 [7] Pütterich T, Fable E, Dux R, O'Mullane M, Neu R and Siccinio M2019 Nucl. Fusion55 056013 [8] Peacock N J, O'Mullane M G, Barnsley R and Tarbutt M2008 Can. J. Phys.86 277 [9] kinner C H2009 Phys. Scr. 2009 014022 [10] Zhang D H, Xie L Y, Jiang J, Wu Z W, Dong C Z, Shi Y L and Qu Y Z2018 Chin. Phys. B27 053402 [11] Jonauskas V, Kynienė A, Kucas S, Pakalka S, Masys S, Prancikevicius A, Borovik A Jr, Gharaibeh M F, Schippers S and Müller A2019 Phys. Rev. A100 062701 [12] Chen L, Li B W and Chen X M2022 J. Quant. Spectrosc. Radiat. Transfer285 108179 [13] Yan C L, Lu Q, Xie Y M, Li B L, Fu N, Zou Y, Chen C and Xiao J2022 Phys. Rev. A105 032820 [14] Priti, Mita M, Kato D, Murakami I, Sakaue H A and Nakamura N2020 Phys. Rev. A102 042818 [15] Lu Q, Yan C L, Fu N, Yang Y, Chen C Y, Xiao J, Wang K and Zou Y2021 J. Quant. Spectrosc. Radiat Transfer262 107533 [16] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team (2021). NIST Atomic Spectra Database (ver. 5.8), [Online]. Available: https://physics.nist.gov/asd [2022, May 28]. National Institute of Standards and Technology, Gaithersburg, MD [17] Gu M F2008 Can. J Phys.86 675 [18] Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Völpel R and Salzborn E1995 J. Phys. B28 2711 [19] Preval S P, Badnell N R and O'Mullane M G2019 J. Phys. B52 025201 [20] Dipti, Das T, Bartschat K, Bray I, Fursa D V, Zatsarinny O, Ballance C, Chung H K and Ralchenko Yu2019 At. Data Nucl. Data Tables127-128 1
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.