Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 063401    DOI: 10.1088/1674-1056/aca14d
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electron-impact ionization of W9+ and W10+

Runjia Bao(鲍润家), Junkui Wei(魏军奎), Lei Chen(陈雷), Bowen Li(李博文), and Ximeng Chen(陈熙萌)
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  Electron-impact single-ionization (EISI) cross sections for Wq+ (q=9, 10) ions have been calculated by using the level-to-level distorted-wave (LLDW) method with emphasis on the contribution of metastable states to the total ionization cross sections. Contributions from direct-ionization (DI) and excitation-autoionization (EA) processes are taken into account. The calculated cross sections include the contributions from both the ground configuration and the long-lived metastable states with lifetimes exceeding 106 s. Calculated cross sections are in good agreement with experimental measurements when the influence of metastable states on the total ionization cross section are well considered.
Keywords:  tungsten ions      electron-impact ionization      relativistic distorted-wave method      metastable states  
Received:  10 May 2022      Revised:  03 November 2022      Accepted manuscript online:  09 November 2022
PACS:  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
  34.80.Dp (Atomic excitation and ionization)  
  32.80.Aa (Inner-shell excitation and ionization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404152) and Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2017-94).
Corresponding Authors:  Bowen Li     E-mail:  libw@lzu.edu.cn

Cite this article: 

Runjia Bao(鲍润家), Junkui Wei(魏军奎), Lei Chen(陈雷), Bowen Li(李博文), and Ximeng Chen(陈熙萌) Electron-impact ionization of W9+ and W10+ 2023 Chin. Phys. B 32 063401

[1] Federici G2006 Phys. Scr. T124 1
[2] Groth M, Brezinsek S, Belo P, Beurskens M N A, Brix M, Clever M, Coenen J W, Corrigan C, Eich T and Flanagan J2013 Nucl. Fusion 53 093016
[3] Pitts R A, Carpentier S, Escourbiac F, Hirai T, Komarov V, Lisgo S, Kukushkin A S, Loarte A, Merola M, Sashala Naik A, Mitteau R, Sugihara M, Bazylev B and Stangeby P C2013 J. Nucl. Matt. 438 S48
[4] Putterich T, Neu R, Dux R, Whiteford A D, O'Mullane M and the ASDEX Upgrade Team2008 Plasma Phys. Control. Fusion 50 085016
[5] Pütterich T, Neu R, Dux R, Whiteford A, O'Mullane M, Summers H and the ASDEX Upgrade Team2010 Nucl. Fusion 50 025012
[6] Müller A2015 Atoms 3 120
[7] Pütterich T, Fable E, Dux R, O'Mullane M, Neu R and Siccinio M2019 Nucl. Fusion 55 056013
[8] Peacock N J, O'Mullane M G, Barnsley R and Tarbutt M2008 Can. J. Phys. 86 277
[9] kinner C H2009 Phys. Scr. 2009 014022
[10] Zhang D H, Xie L Y, Jiang J, Wu Z W, Dong C Z, Shi Y L and Qu Y Z2018 Chin. Phys. B 27 053402
[11] Jonauskas V, Kynienė A, Kucas S, Pakalka S, Masys S, Prancikevicius A, Borovik A Jr, Gharaibeh M F, Schippers S and Müller A2019 Phys. Rev. A 100 062701
[12] Chen L, Li B W and Chen X M2022 J. Quant. Spectrosc. Radiat. Transfer 285 108179
[13] Yan C L, Lu Q, Xie Y M, Li B L, Fu N, Zou Y, Chen C and Xiao J2022 Phys. Rev. A 105 032820
[14] Priti, Mita M, Kato D, Murakami I, Sakaue H A and Nakamura N2020 Phys. Rev. A 102 042818
[15] Lu Q, Yan C L, Fu N, Yang Y, Chen C Y, Xiao J, Wang K and Zou Y2021 J. Quant. Spectrosc. Radiat Transfer 262 107533
[16] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team (2021). NIST Atomic Spectra Database (ver. 5.8), [Online]. Available: https://physics.nist.gov/asd [2022, May 28]. National Institute of Standards and Technology, Gaithersburg, MD
[17] Gu M F2008 Can. J Phys. 86 675
[18] Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Völpel R and Salzborn E1995 J. Phys. B 28 2711
[19] Preval S P, Badnell N R and O'Mullane M G2019 J. Phys. B 52 025201
[20] Dipti, Das T, Bartschat K, Bray I, Fursa D V, Zatsarinny O, Ballance C, Chung H K and Ralchenko Yu2019 At. Data Nucl. Data Tables 127-128 1
[1] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[2] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[3] Electron-impact single ionizaiton for W4+ and W5+
Denghong Zhang(张登红), Luyou Xie(颉录有), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), Yinglong Shi(师应龙), Yizhi Qu(屈一至). Chin. Phys. B, 2018, 27(5): 053402.
[4] Reweighted ensemble dynamics simulations: Theory, improvement, and application
Gong Lin-Chen (龚麟宸), Zhou Xin (周昕), Ouyang Zhong-Can (欧阳钟灿). Chin. Phys. B, 2015, 24(6): 060202.
[5] Electron impact excitation rate coefficients of N II ion
Yang Ning-Xuan(杨宁选),Dong Chen-Zhong(董晨钟), Jiang Jun(蒋军), and Xie Lu-You(颉录有). Chin. Phys. B, 2010, 19(9): 093101.
[6] Metastability of Ising spin chains with nearest-neighbour and next-nearest-neighbour interactions in random fields
G. Ismail, S. Hassan. Chin. Phys. B, 2002, 11(9): 948-954.
[7] SPONTANEOUS TRANSFORMATIONS OF NANOCLUSTERS
M. Rieth, W. Schommers, S. Baskoutas, C. Politis, . Chin. Phys. B, 2001, 10(13): 132-136.
No Suggested Reading articles found!