1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100490, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 School of Physics, Nankai University, Tianjin 300071, China
Abstract The high harmonic generation (HHG) by few-cycle laser pulses is essential for research in strong-field solid-state physics. Through comparison of high harmonic spectra of solids generated by laser pulses with varying durations, we discovered that lasers with good dispersion compensation are capable of producing a broad spectrum of high harmonics. As the pulse duration is further compressed, several interference peaks appear in the broad spectrum. Moreover, we conducted simulations using the semiconductor Bloch equation, considering the effect of Berry curvature, to better understand this process. Our work provides a valuable approach for studying HHG by few-cycle laser pulses in solid materials, expanding the application of HHG in attosecond physics.
Shuai Wang(王帅), Jiawei Guo(郭嘉为), Xinkui He(贺新奎), Yueying Liang(梁玥瑛), Baichuan Xie(谢百川), Shiyang Zhong(钟诗阳), Hao Teng(滕浩), and Zhiyi Wei(魏志义) High harmonic generation in crystal SiO2 by sub-10-fs laser pulses 2023 Chin. Phys. B 32 063301
[1] Goulielmakis E, Yakovlev V S, Cavalieri A L, Uiberacker M, Pervak V, Apolonski A, Kienberger R, Kleineberg U and Krausz F2007 Science317 769 [2] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F2001 Nature414 509 [3] Lépine F, Ivanov M Y and Vrakking M J Raking2014 Nat. Photon.8 195 [4] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K1987 J. Opt. Soc. Am. B-Opt. Phys.4 595 [5] Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou P, Muller H G and Agostini P2001 Science292 1689 [6] Popmintchev D, Hernandez-Garcia C, Dollar F, Mancuso C, Perez-Hernandez J A, Chen M C, Hankla A, Gao X H, Shim B, Gaeta A L, Tarazkar M, Romanov D A, Levis R J, Gaffney J A, Foord M, Libby S B, Jaron-Becker A, Becker A, Plaja L, Murnane M Playa, Kapteyn H C and Popmintchev T2015 Science350 1225 [7] Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S E, Gaeta A, Hernandez-Garcia C, Plaja L, Becker A, Jaron-Becker A, Murnane M Chauth and Kapteyn H C2012 Science336 1287 [8] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A2011 Nat. Phys.7 138 [9] Liu H Z, Li Y L, You Y S, Ghimire S, Heinz T F and Reis D A2017 Nat. Phys.13 262 [10] Luu T Lou, Garg M, Kruchinin S Y, Moulet A, Hassan M T and Goulielmakis E2015 Nature521 498 [11] Ndabashimiye G, Ghimire S, Wu M X, Browne D A, Schafer K J, Gaarde M B and Reis D A2016 Nature534 520 [12] Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W and Huber R2014 Nat. Photon.8 119 [13] Vampa G, Hammond T J, Taucer M, Ding X, Ropagnol X, Ozaki T, Delprat S, Chaker M, Thire N, Schmidt B E, Legare F, Klug D There, Naumov A Y, Villeneuve D M, Staudte A and Corkum P B2018 Nat. Photon.12 465 [14] Yoshikawa N, Tamaya T and Tanaka K2017 Science356 736 [15] You Y S, Reis D A and Ghimire S2017 Nat. Phys.13 345 [16] You Y S, Wu M X, Yin Y C, Chew A, Ren X M, Gholam-Mirzaei S, Browne D A, Chini M, Chang Z H, Schafer K J, Gaarde M B and Ghimire S2017 Opt. Lett.42 1816 [17] You Y S, Yin Y, Wu Y, Chew A, Ren X, Zhuang F, Gholam-Mirzaei S, Chini M, Chang Z and Ghimire S2017 Nat. Commun.8 724 [18] Du T Y, Huang X H and Bian X B 2018 Phys. Rev. A97 6 [19] Golde D, Meier T and Koch S W 2008 Phys. Rev. B77 6 [20] Jiang S C, Wei H, Chen J G, Yu C, Lu R F and Lin C D 2017 Phys. Rev. A96 11 [21] Li L, Lan P F, He L X, Cao W, Zhang Q B and Lu P X 2020 Phys. Rev. Lett.124 6 [22] Song X, Yang S, Zuo R, Meier T and Yang W2020 Phys. Rev. A101 033410 [23] Vampa G, McDonald C R, Orlando G, Klug D Zou, Corkum P B and Brabec T2014 Phys. Rev. Lett.113 073901 [24] Wu M X, Ghimire S, Reis D A, Schafer K J and Gaarde M B 2015 Phys. Rev. A91 11 [25] Yu C, Zhang X R, Jiang S C, Cao X, Yuan G L, Wu T, Bai L H and Lu R F 2016 Phys. Rev. A94 8 [26] Ghimire S, DiChiara A D, Sistrunk E, Szafruga U B, Agostini P, DiMauro L F and Reis D A2011 Phys. Rev. Lett.107 167407 [27] Hohenleutner M, Langer F, Schubert O, Knorr M, Huttner U, Koch S W, Kira M and Huber R2015 Nature523 572 [28] Taucer M, Hammond T J, Corkum P B, Vampa G, Couture C, Thire N, Schmidt B E, Legare F, Selvi H, Unsuree N, Hamilton B, Echtermeyer T J and Denecke M A2017 Phys. Rev. B96 195420 [29] Luu T T and Worner H J 2018 Nat. Commun.9 6
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.