ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Orientation dependence in high harmonics of ZnO with polarization corrections to counteract the birefringent effect |
Yin-Fu Zhang(张银福)1, Teng-Fei Huang(黄腾飞)1, Jia-Peng Li(李佳鹏)1, Ke Yang(杨可)1, Liang Li(李亮)1,†, Xiao-Song Zhu(祝晓松)1, Peng-Fei Lan(兰鹏飞)1,‡, and Pei-Xiang Lu(陆培祥)1,2,3 |
1 School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 2 Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; 3 CAS Center for Excellence in Ultraintense Laser Science, Shanghai 201800, China |
|
|
Abstract We investigate the influence of the birefringence on the high-order harmonics in an a-cut ZnO crystal with mid-infrared laser pulses. The high harmonics exhibit strong dependence on the alignment of the crystal with respect to the laser polarization. We introduce the Jones calculus to counteract the birefringent effect and obtain the harmonics with polarization corrections in ZnO. We show that the birefringent effect plays an important role in the orientation dependence of HHG.
|
Received: 11 January 2021
Revised: 23 March 2021
Accepted manuscript online: 31 March 2021
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.25.Lc
|
(Birefringence)
|
|
02.10.Yn
|
(Matrix theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91950202, 11627809, 11874165, 11934006, 11774109, and 12021004). |
Corresponding Authors:
Liang Li, Peng-Fei Lan
E-mail: liangl@hust.edu.cn;pengfeilan@hust.edu.cn
|
Cite this article:
Yin-Fu Zhang(张银福), Teng-Fei Huang(黄腾飞), Jia-Peng Li(李佳鹏), Ke Yang(杨可), Liang Li(李亮), Xiao-Song Zhu(祝晓松), Peng-Fei Lan(兰鹏飞), and Pei-Xiang Lu(陆培祥) Orientation dependence in high harmonics of ZnO with polarization corrections to counteract the birefringent effect 2021 Chin. Phys. B 30 074204
|
[1] Hentschel M, Kienberger R, Spielmann C, Reider G, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509 [2] He L X, Zhang Q B, Lan P F, Cao W, Zhu X S, Zhai C Y, Wang F, Shi W J, Li M, Bian X B, Lu P X and Bandrauk A D 2018 Nat. Commun. 9 1108 [3] Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689 [4] Corkum P B and Krausz F 2007 Nat. Phys. 3 381 [5] He Y Q, He L X, Wang P, Wang B C, Sun S Q, Liu R X, Wang B N, Lan P F and Lu P X 2020 Opt. Express 28 21182-21191 [6] Niikura H, Legare F, Hasbani R, Bandrauk A D, Ivanov M, Villeneuve D M and Corkum P B 2002 Nature 417 917 [7] Shao R Z, Zhai C Y, Zhang Y F, Sun N, Cao W, Lan P F and Lu P X 2020 Opt. Express 28 15874 [8] Kanai T, Minemoto S and Sakai H 2005 Nature 435 470 [9] Li W, Zhou X, Lock R, Patchkovskii S, Stolow A, Kapteyn H C and Murnane M M 2008 Science 322 1207 [10] Sun N, Zhu X S, Wang B C, Wang D, Shao R Z, Lan P F and Lu P X 2020 Phys. Rev. A 101 053437 [11] Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867 [12] Zhai C Y, Zhang X F, Zhu X S, He L X, Zhang Y F, Wang B N, Zhang Q B, Lan P F and Lu P X 2018 Opt. Express 26 2775 [13] Haessler S, Caillat J and Salieres P 2011 J. Phys. B: At. Mol. Opt. Phys. 44 203001 [14] Wang B C, He Y Q, Zhao X F, He L X, Lan P F, Lu P X and Lin C D 2020 Phys. Rev. A 101 063417 [15] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A 2011 Nat. Phys. 7 138 [16] Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W and Huber R 2014 Nat. Photon. 8 119 [17] Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T and Goulielmakis E 2015 Nature 521 7553 [18] Liu H, Li Y, You Y S, Ghimire S, Feinz T F and Reis D A 2016 Nat. Phys. 13 262 [19] Sivis M, Taucer M, Vampa G, Johnston K, Staudte A, Naumov A Y, Villeneuve D M, Ropers C and Corkum P B 2017 Science 357 303 [20] Gholam-Mirzaei S, Beetar J and Chini M 2017 Appl. Phys. Lett. 110 061101 [21] Huang T F, Zhu X S, Li L, Liu X, Lan P F and Lu P X 2017 Phys. Rev. A 96 043425 [22] You Y S, Reis D A and Ghimire S 2017 Nat. Phys. 13 345 [23] Yoshikawa N, Tamaya T and Tanaka K 2017 Science 356 6339 [24] Li J P, Zhang Q B, Li L, Zhu X S, Huang T F, Lan P F and Lu P X 2019 Phys. Rev. A 99 033421 [25] Vampa G, Hammond T J, Thire N, Schmidt B E, Legare F, McDonald C R, Brabec T, Klug D D and Corkum P B 2015 Phys. Rev. Lett. 115 193603 [26] Lanin A A, Stepanov E A, Fedotov A B and Zheltikov A M 2017 Optica 4 5 [27] Li L, Lan P F, He L X, Cao W, Zhang Q B and Lu P X 2020 Phys. Rev. Lett. 124 157403 [28] Yu C, Jiang S, Wu T, Yuan G, Wang Z, Jin C and Lu R 2018 Phys. Rev. B 98 085439 [29] Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M and Leone S R 2014 Science 346 1348 [30] Garg M, Zhan M, Luu T T, Lakhotia H, Klostermann T, Guggenmos A and Goulielmakis E 2016 Nature 538 7625 [31] Ghimire S, DiChiara A D, Sistrunk E, Ndabashimiye G, Szafruga U B, Mohammad A, Agostini P, DiMauro L F and Reis D A 2012 Phys. Rev. A 85 043836 [32] Jiang S C, Mirzaei S G, Crites E, Beetar J E, Singh M, Lu R F, Chini M and Lin C D 2019 J. Phys. B: At. Mol. Opt. Phys. 52 225601 [33] Liu C D, Zheng Y H, Zeng Z N and Li R X 2016 Phys. Rev. A 93 043806 [34] Crites Erin L 2020 Polarization dependence of high order harmonic generation from solids in reflection and transmission geometries (Honors Undergraduate Theses) 693 [35] Vampa G, Liu H, Heinz T F and Reis D A 2018 Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, CA, USA, pp. 1-2 [36] Vampa G, You Y S, Liu H, Ghimire S and Reis D A 2018 Opt. Express 26 12210 [37] Xia P, Kim C, Lu F, Kanai T, Akiyama H, Itatani J and Ishii N 2018 Opt. Express 26 22 [38] Ratheesh Kumar P M, Kartha C S and Vijayakumar K P 2005 J. Appl. Phys. 97 013509 [39] Wan B Y 2007 Laser Journal 28 6 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|