Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月)1,2, Jun Wang(王俊)1,†, Yan Yan(闫妍)1, Simeng Song(宋思蒙)1, Zhou Chen(陈洲)1, Aihua Liu(刘爱华)1, Jigen Chen(陈基根)2, Fuming Guo(郭福明)1,‡, and Yujun Yang(杨玉军)1,§
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 Department of Physics and Materials Engineering, Taizhou University, Taizhou 318000, China
Abstract High-order harmonic generation (HHG) from an atom illuminated by a sinusoidally phase-modulated pulse is investigated by solving the time-dependent Schrödinger equation. The spectral shift that occurs in atomic HHG can be achieved easily using our laser pulse. It is shown that the photon energy of the generated harmonics is controllable within the range of 1 eV. The shift of the frequency peak position is rooted in the asymmetry of the rising and falling parts of the laser pulse. We also show that by varying the phase parameters in the frequency domain of the laser one can adjust and control the shift in atomic harmonic spectra.
(Distances, redshifts, radial velocities; spatial distribution of galaxies)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604119, 11627807, 11774129, 11774131, 11904120, 11975012, and 91850114) and the Outstanding Youth Project of Taizhou University (Grant No. 2019JQ002).
Corresponding Authors:
Jun Wang, Fuming Guo, Yujun Yang
E-mail: wangjun86@jlu.edu.cn;guofm@jlu.edu.cn;yangyj@jlu.edu.cn
Cite this article:
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军) Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse 2022 Chin. Phys. B 31 064214
[1] Li F, Yang Y J, Chen J, Liu X J, Wei Z Y and Wang B B 2020 Chin. Phys. Lett.37 113201 [2] Li W K, Lei Y, Li X, Yang T, Du M, Jiang Y, Li J L, Lou S Z, Liu A H, He L H, Ma P, Zhang D D and Ding D J 2021 Chin. Phys. Lett.38 053202 [3] Yang W F, Li J, Jia W B, Zhang H D, Liu X W, Zhu M, Song X H and Chen J 2021 Phys. Rev. A103 053105 [4] Yang W F, Song X H, Gong S Q, Cheng Y and Xu Z Z 2007 Phy. Rev. Lett.99 133602 [5] Liu X W, Zhang G J, Li J, Shi G L, Zhou M Y, Song X H and Yang W F 2020 Phy. Rev. Lett.124 113202 [6] Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J and Yang W F 2018 Phy. Rev. Lett.121 103201 [7] Corkum P B 1993 Phy. Rev. Lett.71 1994 [8] Lewenstein M, Balcou Ph, Ivanov M Yu, L'Huillier A and Corkum P B 1994 Phys. Rev. A49 2117 [9] Zhao Y T, Ma S Y, Jiang S C, Yang Y J, Zhao X and Chen J G 2019 Opt. Express27 34392 [10] Zhao Y T, Xu X Q, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Phys. Rev. A101 033413 [11] Zhao Y T, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Opt. Lett.45 2874 [12] Jin C, Wang S J, Zhao X, Zhao S F, Wang S J and Lin C D 2020 Phys. Rev. A101 013429 [13] Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D, Dong W H, Song X H and Yang W F 2021 Chin. Phys. Lett.38 063201 [14] Wang X W, Wang L, Xiao F, Zhang D W, Lu J M, Yuan J M and Zhao Z X 2020 Chin. Phys. Lett.37 023201 [15] Zhao X, Wang S J, Yu W W, Wei H, Wei C L, Wang B C, Chen J G and Lin C D 2020 Phys. Rev. Appl.13 034043 [16] Zhao X, Wei H, Wu Y and Lin C D 2017 Phys. Rev. A95 043407 [17] Zhao X, Wang S J, Wang B C and Lin C D 2020 J. Phys. B: At. Mol. Opt. Phys.53 154002 [18] Lee D G, Kim H T, Hong K H, Nam C H, Choi I W, Bartnik A and Fiedorowicz H 2002 Appl. Phys. Lett.81 3726 [19] Bellini M, Lyngå C, Tozzi A, Gaarde M B, Hänsch T W, L'Huillier A and Wahlström C G 1998 Phy. Rev. Lett.81 297 [20] Burnett N H, Baldis H A, Richardson M C and Enright G D 1977 Appl. Phys. Lett.31 172 [21] Brabec T and Krausz F 2000 Rev. Mod. Phys.72 545 [22] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature414 509 [23] Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M and Gerber G 1998 Science282 919 [24] Bartels R, Backus S, Zeek E, Misoguti L, Vdovin G, Christov I P, Murnane M M and Kapteyn H C 2000 Nature406 164 [25] Weinacht T C, Ahn J and Bucksbaum P H 1999 Nature397 233 [26] Zhao X Y, Wang C C, Hu S L, Li W D, Chen J and Hao X L 2019 Chin. Phys. B28 83202 [27] Chang Z, Rundquist A, Wang H, Christov I, Kapteyn H C and Murnane M M 1998 Phys. Rev. A58 R30 [28] Lee D G, Kim J H, Hong K H and Nam C H 2001 Phy. Rev. Lett.87 243902 [29] Sekikawa T, Ohno T, Yamazaki T, Nabekawa Y and Watanabe S 1999 Phy. Rev. Lett.83 2564 [30] de Bohan A, Antoine P, MiloŠević D B and Piraux B 1998 Phy. Rev. Lett.81 1837 [31] Sansone G, Vozzi C, Stagira S, Pascolini M, Poletto L, Villoresi P, Tondello G, de Silvestri S and Nisoli M 2004 Phy. Rev. Lett.92 113904 [32] Zhao X, Chen J, Fu P, Liu X, Yan Z C and Wang B 2013 Phys. Rev. A87 043411 [33] Corkum P B, Burnett N H and Ivanov M Y 1994 Opt. Lett.19 1870 [34] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science320 1614 [35] Chen J G, Yang Y J, Zeng S L and Liang H Q 2011 Phys. Rev. A83 023401 [36] Mashiko H, Gilbertson S, Li C, Khan S D, Shakya M M, Moon E and Chang Z 2008 Phy. Rev. Lett.100 103906 [37] Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M and Yang Y J 2015 Phys. Rev. A92 033848 [38] Han J X, Wang J, Qiao Y, Liu A H, Guo F M and Yang Y J 2019 Opt. Express27 8768 [39] Ciappina M F, Biegert J, Quidant R and Lewenstein M 2012 Phys. Rev. A85 033828 [40] Guo Y, Liu A H, Wang J and Liu X S 2019 Chin. Phys. B28 094212 [41] Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I and Ye J 2012 Nature482 68 [42] Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y, Attwood D and Jacobsen C 2002 Science297 376 [43] Solak H H 2006 J. Phys. D: Appl. Phys.39 R171 [44] Gulyás Oldal L, Csizmadia T, Ye P, Harshitha N G, ZaÏr A, Kahaly S, Varjú K, Füle M and Major B 2020 Phys. Rev. A102 013504 [45] Watson J B, Sanpera A and Burnett K 1995 Phys. Rev. A51 1458 [46] Schafer K J and Kulander K C 1997 Phy. Rev. Lett.78 638 [47] Geissler M, Tempea G and Brabec T. 2000 Phys. Rev. A62 033817 [48] Bian X B and Bandrauk A D. 2014 Phy. Rev. Lett.113 193901 [49] Du H, Xue S, Wang H, Zhang Z and Hu B 2015 Phys. Rev. A91 063844 [50] Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D, Bayer T and Baumert T 2006 Phys. Rev. A73 063409 [51] Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X and Sun J Z 2007 Chin. Phys. Lett.24 1537 [52] Wang J, Chen G, Guo F M, Li S Y, Chen J G and Yang Y J 2013 Chin. Phys. B22 033203
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.