Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 063302    DOI: 10.1088/1674-1056/acc80a
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Generation of quasi-chirp-free isolated attosecond pulses from atoms under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields

Rui-Xian Yu(蔚瑞贤)1,2, Yue Qiao(乔月)1,2, Ping Li(李萍)1,2, Jun Wang(王俊)1,2, Ji-Gen Chen(陈基根)3, Wei Feng(冯伟)1,2,†, Fu-Ming Guo(郭福明)1,2,‡, and Yu-Jun Yang(杨玉军)1,2,§
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy(Jilin University), Changchun 130012, China;
3 Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 31800, China
Abstract  The intrinsic chirp of high-order harmonic generation is an important factor limiting the production of ultrashort attosecond pulses. Based on numerically solving the time-dependent Schrödinger equation, the generation process of high-order harmonic from the He atom under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields is studied. In this paper, we propose to achieve quasi-chirp-free isolated attosecond pulses by superimposing a higher second-harmonic field on the orthogonal direction of the fundamental frequency field. It is found that the high-energy part of its harmonic emission exhibits small chirp characteristics, which can be used to synthesize isolated attosecond pulses. Through the analysis of the wave packets evolution and the classical motion trajectories of the electron, it is demonstrated that the quasi-chirp-free harmonic can be attributed to the simultaneous return of electrons ionized at different times to the parent particle. The influence of the relative phase of the two pulses on the harmonics is further analyzed, and it is observed that this phenomenon is sensitive to the relative phase, but it can still generate isolated attosecond pulses within a certain phase.
Keywords:  high-order harmonic      orthogonal two-color fields      relative phase      quasi-chirp-free isolated attosecond pulses  
Received:  20 February 2023      Revised:  17 March 2023      Accepted manuscript online:  28 March 2023
PACS:  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307700), the National Natural Science Foundation of China (Grant Nos. 12074145, 11627807, and 11975012), the Research Foundation for Basic Research of Jilin Province, China (Grant No. 20220101003JC), the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), and the Outstanding Youth Project of Taizhou University (Grant No. 2019JQ002). We acknowledge the High Performance Computing Center of Jilin University for supercomputer time.
Corresponding Authors:  Wei Feng, Fu-Ming Guo, Yu-Jun Yang     E-mail:  fengw@jlu.edu.cn;guofm@jlu.edu.cn;yangyj@jlu.edu.cn

Cite this article: 

Rui-Xian Yu(蔚瑞贤), Yue Qiao(乔月), Ping Li(李萍), Jun Wang(王俊), Ji-Gen Chen(陈基根), Wei Feng(冯伟), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军) Generation of quasi-chirp-free isolated attosecond pulses from atoms under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields 2023 Chin. Phys. B 32 063302

[1] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[2] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389
[3] Telnov D A, Heslar J and Chu S I 2017 Phys. Rev. A 95 043425
[4] Heslar J, Telnov D A and Chu S I 2017 Phys. Rev. A 96 063404
[5] Qiao Y, Huo Y Q, Liang H Q, Chen J G, Liu W J, Yang Y J and Jiang S C 2023 Phys. Rev. B 107 075201
[6] Yu C, Jiang S C and Lu R F2019 Adv. Phys. X 4 1562982
[7] Qiao Y, Chen J Q, Huo Y Q, Liang H Q, Yu R X, Chen J G, Liu W J, Jiang S C and Yang Y J 2023 Phys. Rev. A 107 023523
[8] Wu T, Qian C, Wang Z S, Zhang X Y, Yu C and Lu R F2022 Acta Photon. Sin. 51 0851515
[9] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
[10] Qiao Y, Wu D, Chen J G, Wang J, Guo F M and Yang Y J 2019 Phys. Rev. A 100 063428
[11] Qiao Y, Huo Y Q, Jiang S C, Yang Y J and Chen J G 2022 Opt. Express 30 9971
[12] Odžak S, Hasović E and Milošević D B 2016 Phys. Rev. A 94 033419
[13] Li P, Gao N, Yu R X, Wang J, Li S Y, Guo F M and Yang Y J 2022 Chin. Phys. B 31 103303
[14] Qiao Y, Chen J Q and Chen J G 2022 Symmetry 14 2646
[15] Zhou S S, Lan W D, Chen J G, Wang J, Guo F M and Yang Y J 2022 Phys. Rev. A 106 023510
[16] Yan J Z, Zhao S S, Lan W D, Li S Y, Zhou S S, Chen J G, Zhang J Y and Yang Y J 2022 Opt. Express 30 35444
[17] Haight R and Seidler P F 1994 Appl. Phys. Lett. 65 517
[18] Sandhu A S, Gagnon E, Santra R, Sharma V, Li W, Ho P, Ranitovic P, Cocke C L, Murnane M M and Kapteyn H C 2008 Science 322 1081
[19] Siemens M E, Li Q, Yang R, Nelson K A, Anderson E H, Murnane M M and Kapteyn H C 2010 Nat. Mater. 9 26
[20] La-O-Vorakiat C, Siemens M, Murnane M M, Kapteyn H C, Mathias S, Aeschlimann M, Grychtol P, Adam R, Schneider C M, Shaw J M, Nembach H and Silva T J 2009 Phys. Rev. Lett. 103 257402
[21] Sandberg R L, Raymondson D A, o vorakiat C L, Paul A, Raines K S, Miao J, Murnane M M, Kapteyn H C and Schlotter W F 2009 Opt. Lett. 34 1618
[22] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[23] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M and Chang Z H2017 Nat. Commun. 8 186
[24] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
[25] Mairesse Y, De Bohan A, Frasinski L, Merdji H, Dinu L, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B, Mulle H, Agostini P and Saliéres P 2003 Science 302 1540
[26] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[27] Schafer K J, Yang B, DiMauro L F and Kulander K C 1993 Phys. Rev. Lett. 70 1599
[28] Sekikawa T, Ohno T, Yamazaki T, Nabekawa Y and Watanabe S 1999 Phys. Rev. Lett. 83 2564
[29] Popmintchev T, Chen M C, Popmintchev D, et al. 2012 Science 336 1287
[30] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F and Wörner H J 2017 Opt. Express 25 27506
[31] Morlens A S, Balcou P, Zeitoun P, Valentin C, Laude V and Kazamias S 2005 Opt. Lett. 30 1554
[32] Kim K T, Kim C M, Baik M G, Umesh G and Nam C H 2004 Phys. Rev. A 69 051805
[33] Lopez-Martens R, Varjú K, Johnsson P, Mauritsson J, Mairesse Y, Salieres P, Gaarde M B, Schafer K J, Persson A, Svanberg S, Claes-G?ran W and L'Huillier A 2005 Phys. Rev. Lett. 94 033001
[34] Ko D H, Kim K T, Park J, Lee J h and Nam C H 2010 New J. Phys. 12 063008
[35] Kim K T, Kang K S, Park M N, Imran T, Umesh G and Nam C H 2007 Phys. Rev. Lett. 99 223904
[36] Zou P, Zeng Z N, Zheng Y H, Lu Y Y, Liu P, Li R X and Xu Z Z 2010 Phys. Rev. A 81 033428
[37] Kohler M C, Keitel C H and Hatsagortsyan K Z 2011 Opt. Express 19 4411
[38] Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M and Yang Y J 2015 Phys. Rev. A 92 033848
[39] Jia C, Wang J, Li Q Y, Guo F M, Chen J G, Zeng S L and Yang Y J 2015 Opt. Express 23 32222
[40] Balogh E, Kovacs K, Dombi P, Fulop J A, Farkas G, Hebling J, Tosa V and Varju K 2011 Phys. Rev. A 84 023806
[41] Yuan K J and Bandrauk A D 2013 Phys. Rev. Lett. 110 023003
[42] Ge X L, Du H, Guo J and Liu X S2015 Opt. Lett. 23 8837
[43] Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J and Nam C H 2005 Phys. Rev. Lett. 94 243901
[44] Kim C M, Kim I J and Nam C H 2005 Phys. Rev. A 72 033817
[45] Zheng Y H, Zeng Z N, Zou P, Zhang L, Li X F, Liu P, Li R X and Xu Z Z 2009 Phys. Rev. Lett. 103 043904
[46] Wang J, Chen G, Guo F M, Li S Y, Chen J G and Yang Y J 2013 Chin. Phys. B 22 033203
[47] Yang Y J, Chen J G, Huang Y X, Guo F M, Zhang H X, Sun J Z, Zhu H Y, Li W, Wang H and Zhu Q R 2007 Chin. Phys. Lett. 24 1894
[48] Guo F M, Yang Y J, Jin M X, Ding D J and Zhu Q R 2009 Chin. Phys. Lett. 26 053201
[49] Kazamias S and Balcou P 2004 Phys. Rev. A 69 063416
[1] Elliptically polarized high-order harmonic generation in nitrogen molecules with cross-linearly polarized two-color laser fields
Chunyang Zhai(翟春洋), Yinmeng Wu(吴银梦), Lingling Qin(秦玲玲), Xiang Li(李翔), Luke Shi(史璐珂), Ke Zhang(张可), Shuaijie Kang(康帅杰), Zhengfa Li(李整法), Yingbin Li(李盈傧), Qingbin Tang(汤清彬), and Benhai Yu(余本海). Chin. Phys. B, 2023, 32(7): 073301.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[4] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[5] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[6] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[7] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[8] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[9] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[10] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[11] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[12] Amplitude and rotation of the ellipticity of harmonicsfrom a linearly polarized laser field
Ping Li(李萍), Na Gao(高娜), Rui-Xian Yu(蔚瑞贤), Jun Wang(王俊), Su-Yu Li(李苏宇), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2022, 31(10): 103303.
[13] Orientation dependence in high harmonics of ZnO with polarization corrections to counteract the birefringent effect
Yin-Fu Zhang(张银福), Teng-Fei Huang(黄腾飞), Jia-Peng Li(李佳鹏), Ke Yang(杨可), Liang Li(李亮), Xiao-Song Zhu(祝晓松), Peng-Fei Lan(兰鹏飞), and Pei-Xiang Lu(陆培祥). Chin. Phys. B, 2021, 30(7): 074204.
[14] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[15] Minimum structure of high-harmonic spectrafrom aligned O2 and N2 molecules
Bo Yan(闫博), Yi-Chen Wang(王一琛), Qing-Hua Gao(高庆华), Fang-Jing Cheng(程方晶), Qiu-Shuang Jing(景秋霜), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2021, 30(11): 114213.
No Suggested Reading articles found!