Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 043302    DOI: 10.1088/1674-1056/ac29a8

Enhancement of isolated attosecond pulse generation by using long gas medium

Yueying Liang(梁玥瑛)1,3, Xinkui He(贺新奎)1,2,3,†, Kun Zhao(赵昆)1, Hao Teng(滕浩)1, and Zhiyi Wei(魏志义)1,2,3,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Isolated attosecond pulse generation in argon is theoretically investigated for different gas pressures and medium lengths. The output of attosecond pulse is effectively enhanced by using a longer gas medium with optimized pressure. The peak intensity of the attosecond pulse by using 6 mm gas medium is doubled compared with that of 1-3 mm gas cell, which is usually used in the experiment. Our simulation shows that the distortion of the driving laser waveform and the absorption are the main factors that limit the output of the attosecond pulse for the long gas medium. Optimized generation condition could be found by balancing the medium length and pressure.
Keywords:  isolated attosecond pulse      high-order harmonic generation  
Received:  16 June 2021      Revised:  13 September 2021      Accepted manuscript online:  24 September 2021
PACS:  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1107200) and the National Natural Science Foundation of China (Grant Nos. 11974416 and 91850209).
Corresponding Authors:  Xinkui He, Zhiyi Wei     E-mail:;

Cite this article: 

Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义) Enhancement of isolated attosecond pulse generation by using long gas medium 2022 Chin. Phys. B 31 043302

[1] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[2] Holler M, Schapper F, Gallmann L and Keller U 2011 Phys. Rev. Lett. 106 123601
[3] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
[4] Sola I, Mével E, Elouga L, Constant E, Strelkov V, Poletto L, Villoresi P, Benedetti E, Caumes J P and Stagira S 2006 Nat. Phys. 2 319
[5] Abel M J, Pfeifer T, Nagel P M, Boutu W, Bell M J, Steiner C P, Neumark D M and Leone S R 2009 Chem. Phys. 366 9
[6] Vincenti H and Quéré F 2012 Phys. Rev. Lett 108 113904
[7] Chini M, Zhao K and Chang Z 2014 Nat. Photon. 8 178
[8] Sansone G, Poletto L and Nisoli M 2011 Nat. Photon. 5 655
[9] Shiner A, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, LégaréF, Giguére M, Kieffer J, Corkum P and Villeneuve D 2009 Phys. Rev. Lett. 103 073902
[10] Heyl C, Arnold C, Couairon A and L'Huillier A 2016 J. Phys. B:Atom. Mol. Opt. Phys. 50 013001
[11] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U 2008 Nat. Phys. 4 565
[12] Tzallas P, Charalambidis D, Papadogiannis N, Witte K and Tsakiris G D 2003 Nature 426 267
[13] Nabekawa Y, Shimizu T, Okino T, Furusawa K, Hasegawa H, Yamanouchi K and Midorikawa K 2006 Phys. Rev. Lett 96 083901
[14] Chang 2007 Phys. Rev. A 76 051403
[15] Wang G, Jin C, Le A T and Lin C 2011 Phys. Rev. A 84 053404
[16] Rothhardt J, Krebs M, Hädrich S, Demmler S, Limpert J and Tünnermann A 2014 New J. Phys. 16 033022
[17] Delfin C, Altucci C, De Filippo F, De Lisio C, Gaarde M, L'Huillier A, Roos L and Wahlström 1999 J. Phys. B:Atom. Mol. Opt. Phys. 32 5397
[18] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S and Wu Y 2017 Nat. Commun. 8 1
[19] Priori E, Cerullo G, Nisoli M, Stagira S, De Silvestri S, Villoresi P, Poletto L, Ceccherini P, Altucci C and Bruzzese R 2000 Phys. Rev. A 61 063801
[20] Lewenstein M, Balcou P, Ivanov M Y, L'huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[21] Constant E, Garzella D, Breger P, Mével E, Dorrer C, Le Blanc C, Salin F and Agostini P 1999 Phys. Rev. Lett. 82 1668
[22] Yakovlev V S and Scrinzi A 2003 Phys. Rev. Lett. 91 153901
[23] Pfeifer T, Spielmann C and Gerber G 2006 Rep. Prog. Phys. 69 443
[24] Jin C and Lin C D 2016 Phys. Rev. A 94 043804
[25] Bellini M, Corsi C and Gambino M 2001 Phys. Rev. A 64 023411
[26] Chang Z 2016 Fundamentals of Attosecond Optics p. 171
[27] Agrawal G P 2000 Nonlinear Fib. Opt. p. 195
[28] Varjú K, Mairesse Y, Carré B, Gaarde M B, Johnsson P, Kazamias S, López-Martens R, Mauritsson J, Schafer K and Balcou P 2005 J. Mod. Opt. 52 379
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[4] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[5] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[6] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[7] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[8] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[9] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[10] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[11] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[12] Minimum structure of high-harmonic spectrafrom aligned O2 and N2 molecules
Bo Yan(闫博), Yi-Chen Wang(王一琛), Qing-Hua Gao(高庆华), Fang-Jing Cheng(程方晶), Qiu-Shuang Jing(景秋霜), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2021, 30(11): 114213.
[13] Role of potential on high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser fields
Xu-Xu Shen(申许许), Jun Wang(王俊), Fu-Ming Guo(郭福明), Ji-Gen Chen(陈基根), Yun-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(8): 083201.
[14] Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields
Peng-Cheng Li(李鹏程), Shih-I Chu. Chin. Phys. B, 2020, 29(8): 083202.
[15] Semi-integer harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized laser field
Tong Qi(齐桐), Xiao-Xin Huo(霍晓鑫), Jun Zhang(张军), Xue-Shen Liu(刘学深). Chin. Phys. B, 2020, 29(5): 053201.
No Suggested Reading articles found!