|
|
Enhancement of isolated attosecond pulse generation by using long gas medium |
Yueying Liang(梁玥瑛)1,3, Xinkui He(贺新奎)1,2,3,†, Kun Zhao(赵昆)1, Hao Teng(滕浩)1, and Zhiyi Wei(魏志义)1,2,3,‡ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Songshan Lake Materials Laboratory, Dongguan 523808, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Isolated attosecond pulse generation in argon is theoretically investigated for different gas pressures and medium lengths. The output of attosecond pulse is effectively enhanced by using a longer gas medium with optimized pressure. The peak intensity of the attosecond pulse by using 6 mm gas medium is doubled compared with that of 1-3 mm gas cell, which is usually used in the experiment. Our simulation shows that the distortion of the driving laser waveform and the absorption are the main factors that limit the output of the attosecond pulse for the long gas medium. Optimized generation condition could be found by balancing the medium length and pressure.
|
Received: 16 June 2021
Revised: 13 September 2021
Accepted manuscript online: 24 September 2021
|
PACS:
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1107200) and the National Natural Science Foundation of China (Grant Nos. 11974416 and 91850209). |
Corresponding Authors:
Xinkui He, Zhiyi Wei
E-mail: xinkuihe@iphy.ac.cn;zywei@iphy.ac.cn
|
Cite this article:
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义) Enhancement of isolated attosecond pulse generation by using long gas medium 2022 Chin. Phys. B 31 043302
|
[1] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509 [2] Holler M, Schapper F, Gallmann L and Keller U 2011 Phys. Rev. Lett. 106 123601 [3] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689 [4] Sola I, Mével E, Elouga L, Constant E, Strelkov V, Poletto L, Villoresi P, Benedetti E, Caumes J P and Stagira S 2006 Nat. Phys. 2 319 [5] Abel M J, Pfeifer T, Nagel P M, Boutu W, Bell M J, Steiner C P, Neumark D M and Leone S R 2009 Chem. Phys. 366 9 [6] Vincenti H and Quéré F 2012 Phys. Rev. Lett 108 113904 [7] Chini M, Zhao K and Chang Z 2014 Nat. Photon. 8 178 [8] Sansone G, Poletto L and Nisoli M 2011 Nat. Photon. 5 655 [9] Shiner A, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, LégaréF, Giguére M, Kieffer J, Corkum P and Villeneuve D 2009 Phys. Rev. Lett. 103 073902 [10] Heyl C, Arnold C, Couairon A and L'Huillier A 2016 J. Phys. B:Atom. Mol. Opt. Phys. 50 013001 [11] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U 2008 Nat. Phys. 4 565 [12] Tzallas P, Charalambidis D, Papadogiannis N, Witte K and Tsakiris G D 2003 Nature 426 267 [13] Nabekawa Y, Shimizu T, Okino T, Furusawa K, Hasegawa H, Yamanouchi K and Midorikawa K 2006 Phys. Rev. Lett 96 083901 [14] Chang 2007 Phys. Rev. A 76 051403 [15] Wang G, Jin C, Le A T and Lin C 2011 Phys. Rev. A 84 053404 [16] Rothhardt J, Krebs M, Hädrich S, Demmler S, Limpert J and Tünnermann A 2014 New J. Phys. 16 033022 [17] Delfin C, Altucci C, De Filippo F, De Lisio C, Gaarde M, L'Huillier A, Roos L and Wahlström 1999 J. Phys. B:Atom. Mol. Opt. Phys. 32 5397 [18] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S and Wu Y 2017 Nat. Commun. 8 1 [19] Priori E, Cerullo G, Nisoli M, Stagira S, De Silvestri S, Villoresi P, Poletto L, Ceccherini P, Altucci C and Bruzzese R 2000 Phys. Rev. A 61 063801 [20] Lewenstein M, Balcou P, Ivanov M Y, L'huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [21] Constant E, Garzella D, Breger P, Mével E, Dorrer C, Le Blanc C, Salin F and Agostini P 1999 Phys. Rev. Lett. 82 1668 [22] Yakovlev V S and Scrinzi A 2003 Phys. Rev. Lett. 91 153901 [23] Pfeifer T, Spielmann C and Gerber G 2006 Rep. Prog. Phys. 69 443 [24] Jin C and Lin C D 2016 Phys. Rev. A 94 043804 [25] Bellini M, Corsi C and Gambino M 2001 Phys. Rev. A 64 023411 [26] Chang Z 2016 Fundamentals of Attosecond Optics p. 171 [27] Agrawal G P 2000 Nonlinear Fib. Opt. p. 195 [28] Varjú K, Mairesse Y, Carré B, Gaarde M B, Johnsson P, Kazamias S, López-Martens R, Mauritsson J, Schafer K and Balcou P 2005 J. Mod. Opt. 52 379 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|