CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of atomic corrugations on electronic structures in Pb1-xBix thin films |
Pengju Li(李鹏举)1,2, Kun Xie(谢鹍)1,2, Yumin Xia(夏玉敏)1,2, Desheng Cai(蔡德胜)1,2, and Shengyong Qin(秦胜勇)1,2,† |
1 International Centre for Quantum Design of Functional Materials(ICQD), University of Science and Technology of China, Hefei 230026, China; 2 CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We carried out experimental investigations of the geometric effect on the electronic behavior in Pb$_{1-x}$Bi$_{x}$ thin films by scanning tunneling microscopy and spectroscopy. Single crystal monolayer Pb$_{0.74}$Bi$_{0.26}$ and two-monolayer Pb$_{0.75}$Bi$_{0.25}$ Pb$_{1-x}$Bi$_{x}$ thin films were fabricated by molecular beam epitaxy, where large surface corrugations were observed. Combined with tunneling spectroscopic measurements, it is found that atomic corrugations can widely change the electronic behaviors. These findings show that the Pb$_{1-x}$Bi$_{x}$ system can be a promising platform to further explore geometry-decorated electronic behavior in two-dimensional metallic thin films.
|
Received: 10 January 2023
Revised: 20 February 2023
Accepted manuscript online: 27 February 2023
|
PACS:
|
61.30.Hn
|
(Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)
|
|
61.66.-f
|
(Structure of specific crystalline solids)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2017YFA0205004), the National Natural Science Foundation of China (Grant Nos. 92165201, 11474261, and 11634011), and the Fundamental Research Funds for the Central Universities (Grant No. WK3510000006), and the Anhui Initiative Fund in Quantum Information Technologies (Grant No. AHY170000). |
Corresponding Authors:
Shengyong Qin
E-mail: syqin@ustc.edu.cn
|
Cite this article:
Pengju Li(李鹏举), Kun Xie(谢鹍), Yumin Xia(夏玉敏), Desheng Cai(蔡德胜), and Shengyong Qin(秦胜勇) Effects of atomic corrugations on electronic structures in Pb1-xBix thin films 2023 Chin. Phys. B 32 066101
|
[1] Qin W, Li L and Zhang Z2019 Nat. Phys. 15 796 [2] Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y and Shih C K2017 Sci. Adv. 3 e1601459 [3] Nam H, Chen H, Liu T, Kim J, Zhang C, Yong Y, Lemberger T R, Kratz P A, Kirtley J R, K. Moler, Adams P W, MacDonald A H and Shih C K2016 Proc. Natl. Acad. Sci. USA 113 10513 [4] Lei C, Chen H and Macdonald A H2018 Phys. Rev. Lett. 121 227701 [5] Matetskiy A V, Ichinokura S, Bondarenko L V, Tupchaya A Y, Gruznev D V, Zotov A V, Saranin A A, Hobara R, Takayama A and Hasegawa S2015 Phys. Rev. Lett. 115 147003 [6] Ito S, Feng B, Arita M, Takayama A, Liu R Y, Someya T, Chen W C, Iimori T, Namatame H, Taniguchi M, Cheng C M, Tang S J, Komori F, Kobayashi K, Chiang T C and Matsuda I2016 Phys. Rev. Lett. 117 236402 [7] Koroteev Y M, Bihlmayer G, Gayone J E, Chulkov E V, Blügel S, Echenique P M and Hofmann P2004 Phys. Rev. Lett. 93 046403 [8] Hirahara T, Fukui N, Shirasawa T, Yamada M, Aitani M, Miyazaki H, Matsunami M, Kimura S, Takahashi T, Hasegawa S and Kobayashi K2012 Phys. Rev. Lett 109 227401 [9] Li L, Ren S, Qin W, Zhang S, Wan X, Jia Y, Cui P and Zhang Z2020 Phys. Rev. B 102 035150 [10] Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F and Xue Q K2010 Nat. Phys. 6 104 [11] Lu S M, Yang M C, Su W B, Jiang C L, Hsu T, Chang C S and Tsong T T2007 Phys. Rev. B 75 113402 [12] Jian W B, Su W B, Chang C S and Tsong T T2003 Phys. Rev. Lett. 90 196603 [13] Qin S, Kim J, Niu Q and Shih C K2009 Science 324 1314 [14] Mihalyuk A N, Hsing C R, Wei C M, Eremeev S V, Bondarenko L V, Tupchaya A Y, Gruznev D V, Zotov A V and Saranin A A2018 J. Phys.: Condens. Matter 30 025002 [15] Li P, Xie K, Li L, Li X, Xia Y, Zhang R and Qin S2022 Phys. Status Solidi B 259 2200095 [16] Souto-Casares J, Chan T L, Chelikowsky J R, Ho K M, Wang C Z and Zhang S B2015 Phys. Rev. B 92 094103 [17] Zhang Z, Niu Q and Shih C K1998 Phys. Rev. Lett. 80 5381 [18] Guinea F, Katsnelson M I and Geim A K2010 Nat. Phys. 6 30 [19] Shi H, Zhan Z, Qi Z, Huang K, van Veen E, Silva-Guillén J Á, Zhang R, Li P, Xie K, Ji H, Katsnelson M I, Yuan S, Qin S and Zhang Z2020 Nat. Commun. 11 371 [20] Hupalo M, Schmalian J and Tringides M C 2003 Phys. Rev. Lett. 90 4 [21] Chan T L, Wang C Z, Hupalo M , Tringides C M, Lu Z Y and Ho K M 2003 Phys. Rev. B 68 045410 [22] Ye Z, Lyuksyutov I F, Wu W and Naugle D G2011 Supercond. Sci. Technol. 24 024019 [23] Stepanovsky S, Yakes M, Yeh V, Hupalo M and Tringides M C2006 Surf. Sci. 600 1417 [24] Meyerovich A E and Chen D M2002 Phys. Rev. B 66 235306 [25] Hupalo M, Yeh V, Chan T L, Wang C Z, Ho K M and Tringides M C2005 Phys. Rev. B 71 193408 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|