Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066102    DOI: 10.1088/1674-1056/acc51f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions

Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格),Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航)
College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China
Abstract  Bimetallic clusters have aroused tremendous interest because the property changes like structure, size, and composition have occurred. Herein, a structural search of the global minimum for anionic LiMg$_{n}^{-}$ ($n=2$-11) clusters is performed using an efficient crystal structure analysis by particle swarm optimization (CALYPSO) structural searching program with subsequent density functional theory (DFT) calculations. A great variety of low energetic isomers are converged, and the most stable ones are confirmed by comparing their total energy of each size. It is found that the LiMg$_{n}^{-}$ clusters are structurally consistent with corresponding Mg clusters anions except for LiMg$_{5}^{-}$ and LiMg$_{7}^{-}$. In all the doped clusters, the Li atom prefers to occupy the convex position. Simulated photoelectron spectra (PES), Infrared (IR), and Raman spectra of LiMg$_{n}^{-}$ could be used as an essential evidence for identifying cluster structures experimentally in the future. Stability study reveals that a tower-like structure of LiMg$_{9}^{-}$ has prominent stability and can be identified as a magic number cluster. The reason might be that there are both closed-shell 1S$^{2}$1P$^{6}$1D$^{10}$2S$^{2}$ electronic configurations and stronger Li-Mg bonds caused by sp hybridization in the LiMg$_{9}^{-}$ cluster.
Keywords:  LiMg$_{n}^{-}$ clusters      crystal structure analysis by particle swarm optimization (CALYPSO)      structures      electronic properties  
Received:  24 October 2022      Revised:  14 February 2023      Accepted manuscript online:  17 March 2023
PACS:  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404008), the Innovation Training Program for College Students of Shanxi Province of China (Grant No. S201910721061), and the Innovation Training Program for College Students of Baoji University of Arts and Sciences (Grant No. 20191XJ087).
Corresponding Authors:  Ya-Ru Zhao     E-mail:  bjwl_zyr@163.com

Cite this article: 

Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航) Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions 2023 Chin. Phys. B 32 066102

[1] Du Y X, Sheng H T, Astruc D and Zhu M Z2020 Chem. Rev. 120 526
[2] Zhao J J, Du Q Y, Zhou S and Kumar V2020 Chem. Rev. 120 9021
[3] Peng F, Song X Q, Liu C, Li Q, Miao M S, Chen C F and Ma Y M2020 Nat. Commun. 11 5227
[4] Farooq U, Naz S, Xu H G, Yang B, Xu X L and Zheng W J2020 Coord. Chem. Rev. 403 213095
[5] Tian Y H, Sun W G, Chen B L, Jin Y Y and Lu C2019 Chin. Phys. B 28 103104
[6] Yan L J, Shao J M and Li Y Q2020 Chin. Phys. B 29 125101
[7] Li J, Zhai H J and Wang L S2003 Science 229 864
[8] Bergeron D E, Castleman J A W, Morisato T and Khanna S N2004 Science 304 84
[9] Sarkar U and Blundell S A2009 Phys. Rev. B 79 125441
[10] Jia Y H, Zhang H Y, Cheng L J and Luo Z X2021 J. Phys. Chem. Lett. 12 5115
[11] Zhang X X, Wang Y, Wang H P, Lim A, Gantefoer G, Bowen K T, Reveles J U and Khanna S N2013 J. Am. Chem. Soc. 135 4856
[12] Diederich T, Döppner T, Braune J, Tiggesbäumker J and Meiwes-Broer K H2001 Phys. Rev. Lett. 86 4807
[13] Thomas O C, Zheng W J, Xu S J and Bowen J K H2002 Phys. Rev. Lett. 89 213403
[14] Jellinek J and Acioli P H2002 J. Phys. Chem. A 106 10919
[15] Acioli P H and Jellinek J2002 Phys. Rev. Lett. 89 213402
[16] Duanmu K, Roberto-Neto O, Machado F B C, Hansen J A, Shen J, Piecuch P and Truhlar D G2016 J. Phys. Chem. C 120 13275
[17] Xia X X, Kuang X Y, Lu C, Jin Y Y, Xing X D, Merino G and Hermann A2016 J. Phys. Chem. A 120 7947
[18] Heidari I, De S, Ghazi S M, Goedecker S and Kanhere D G2011 J. Phys. Chem. A 115 12307
[19] Janecek S, Krotscheck E, Liebrecht M and Wahl R2011 Eur. Phys. J. D 63 377
[20] De S, Ghasemi A A, Willand A, Genovese L, Kanhere D and Goedecher S2011 J. Chem. Phys. 134 124302
[21] Knight W D, Clemenger K, de Heer Saunders W A, Chou M Y and Cohen M L1984 Phys. Rev. Lett. 52 2141
[22] Chen X F, Zhang Y, Qi K T, Li B, Zhu Z H and Sheng Y2010 Chin. Phys. B 19 033601
[23] Li J, Liu X Y, Zhu Z H and Sheng Y2012 Chin. Phys. B 21 033101
[24] Xi S G, Li Q Y, Hu Y F, Yuan Y Q, Zhao Y R, Yuan J J, Li M C and Yang Y J2022 Chin. Phys. B 31 016106
[25] Li Q Y, Xi S G, Hu Y F, Yuan Y Q, Zhao Y R, Li M C, Yuan J J and Yang Y J2021 Comput. Mater. Sci. 197 110605
[26] Zhu B C, Deng P J, Guo J and Kang W B2022 Front. Chem. 10 870985
[27] Zhu B C, Bao L, Deng P J, Zeng L, Kang W B and Guo J2022 J. Chem. Phys. 157 114303
[28] Medel V M, Reveles J U, Khanna S N, Chauhan V, Sen P and Castlemen A W2011 Proc. Natl. Acad. Sci. USA 108 10062
[29] Ge G X, Han Y, Wan J G, Zhao J J and Wang G H2013 J. Chem. Phys. 139 174309
[30] Ma X L, Liu S G and Huang S P2017 Int. J. Hydrog. Energy 42 24797
[31] Zhao Y R, Xu Y Q, Chen P, Yuan Y Q, Qian Y and Li Q2021 Results Phys. 26 104341
[32] Peng X, Liu W C, Wu G H, Ji H and Ding W J2022 J. Mater. Sci. Technol. 99 193
[33] Ma X C, Jin S Y, Wu R Z, Wang J X, Wang G X, Krit B and Betsofen S2021 Trans. Nonferr. Matel. Soc. 31 3228
[34] Rao B K and Jena P1988 Phys. Rev. B 37 2867
[35] Fantcci P, Bonačić-Koutechý W P and Koutechý J1989 J. Chem. Phys. 91 4229
[36] Deshpande M, Dhavale A, Zope R R, Chacko S and Kanhere D G2000 Phys. Rev. A 62 063202
[37] Li C G, Cui Y Q, Tian H, Shao Q Q, Zhang J, Ren B Z and Yuan Y Q2021 Comput. Mater. Sci. 200 110800
[38] Liu S H, Qi Y J, Jin Y Z, Wang Y Y, Liu C, Yang H and Zhang Z X2022 Comput. Mater. Sci. 210 111440
[39] Wang Y C, Lv J, Zhu L and Ma Y M2010 Phys. Rev. B 82 094116
[40] Lv J, Wang Y C, Zhu L and Ma Y M2012 J. Chem. Phys. 137 084104
[41] Tong Q C, Lv J, Gao P Y and Wang Y C2019 Chin. Phys. B 28 106105
[42] Zhao Y R, Bai T T, Jia L N, Xin W, Hu Y F, Zheng X S and Hou S T2019 J. Phys. Chem. C 123 28561
[43] Lu C, Gong W G, Li Q and Chen C F2020 J. Phys. Chem. Lett. 11 9165
[44] Li C G, Li H J, Cui Y Q, Tian H, Shao Q Q, Zhang J, Zhao G, Ren B Z and Hu Y F2021 J. Mol. Liq. 339 116764
[45] Zeng L, Wei X F, Liang M K, Deng P J, Bi J and Zhu B C2020 Comput. Mater. Sci. 182 109795
[46] Li Z, Zhao Z, Zhou Z H, Wang H B and Li S L2017 Mater. Chem. Phys. 199 585
[47] Dou X L, Kuang X Y, Sun W G, Jiang G, Lu C and Hermann A2021 Phys. Rev. B 104 224510
[48] Peng F, Yao T S, Liu H Y and Ma Y M2015 J. Phys. Chem. Lett. 6 2363
[49] Li C G, Cui Y Q, Tian H, Ren B Z, Li Q Y, Li Y Y and Yang H2022 Nanomaterials 12 1654
[50] Jin W Y, Sun W G, Kuang X Y, Lu C and Kou L Z2020 J. Phys. Chem. Lett. 11 9643
[51] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision D.01 (Wallingford CT: Gaussian Inc.)
[52] Gordon M S, Binkley J S, Pople J A, Pietro W J and Hehre W J1982 J. Am. Chem. Soc. 104 2797
[53] Mclean A D and Chandler G S1980 J. Chem. Phys. 72 5639
[54] Krishnan R, Binkley J S, Seeger R and Pople J A1980 J. Chem. Phys. 72 650
[55] Lu T and Chen F W2012 J. Comput. Chem. 33 580
[56] Koopmans T1943 Physica 1 104
[57] Lyalin A G, Semenov S K, Solov'yov A V and Cherepkov N A2000 J. Phys. B 33 3653
[58] Lyalin A G, Matveetsev A, Solov'yov I A and Solov'yov A V2003 Eur. Phys. J. D 24 15
[59] Zubarev D Y and Boldyrev A I2008 Phys. Chem. Chem. Phys. 10 5207
[1] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[2] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[3] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[4] Construction of multi-walled carbon nanotubes/ZnSnO3 heterostructures for enhanced acetone sensing performance
Liyong Du(杜丽勇) and Heming Sun(孙鹤鸣). Chin. Phys. B, 2023, 32(5): 050701.
[5] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[6] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[7] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[8] Evolution of surfaces and mechanisms of contact electrification between metals and polymers
Lin-Feng Wang(王林锋), Yi Dong(董义), Min-Hao Hu(胡旻昊), Jing Tao(陶静), Jin Li(李进), and Zhen-Dong Dai(戴振东). Chin. Phys. B, 2022, 31(6): 066202.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[11] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[12] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[13] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
No Suggested Reading articles found!