Abstract Bimetallic clusters have aroused tremendous interest because the property changes like structure, size, and composition have occurred. Herein, a structural search of the global minimum for anionic LiMg (-11) clusters is performed using an efficient crystal structure analysis by particle swarm optimization (CALYPSO) structural searching program with subsequent density functional theory (DFT) calculations. A great variety of low energetic isomers are converged, and the most stable ones are confirmed by comparing their total energy of each size. It is found that the LiMg clusters are structurally consistent with corresponding Mg clusters anions except for LiMg and LiMg. In all the doped clusters, the Li atom prefers to occupy the convex position. Simulated photoelectron spectra (PES), Infrared (IR), and Raman spectra of LiMg could be used as an essential evidence for identifying cluster structures experimentally in the future. Stability study reveals that a tower-like structure of LiMg has prominent stability and can be identified as a magic number cluster. The reason might be that there are both closed-shell 1S1P1D2S electronic configurations and stronger Li-Mg bonds caused by sp hybridization in the LiMg cluster.
Received: 24 October 2022
Revised: 14 February 2023
Accepted manuscript online: 17 March 2023
PACS:
61.46.Bc
(Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404008), the Innovation Training Program for College Students of Shanxi Province of China (Grant No. S201910721061), and the Innovation Training Program for College Students of Baoji University of Arts and Sciences (Grant No. 20191XJ087).
Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航) Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions 2023 Chin. Phys. B 32 066102
[1] Du Y X, Sheng H T, Astruc D and Zhu M Z2020 Chem. Rev.120 526 [2] Zhao J J, Du Q Y, Zhou S and Kumar V2020 Chem. Rev.120 9021 [3] Peng F, Song X Q, Liu C, Li Q, Miao M S, Chen C F and Ma Y M2020 Nat. Commun.11 5227 [4] Farooq U, Naz S, Xu H G, Yang B, Xu X L and Zheng W J2020 Coord. Chem. Rev.403 213095 [5] Tian Y H, Sun W G, Chen B L, Jin Y Y and Lu C2019 Chin. Phys. B28 103104 [6] Yan L J, Shao J M and Li Y Q2020 Chin. Phys. B29 125101 [7] Li J, Zhai H J and Wang L S2003 Science229 864 [8] Bergeron D E, Castleman J A W, Morisato T and Khanna S N2004 Science304 84 [9] Sarkar U and Blundell S A2009 Phys. Rev. B79 125441 [10] Jia Y H, Zhang H Y, Cheng L J and Luo Z X2021 J. Phys. Chem. Lett.12 5115 [11] Zhang X X, Wang Y, Wang H P, Lim A, Gantefoer G, Bowen K T, Reveles J U and Khanna S N2013 J. Am. Chem. Soc.135 4856 [12] Diederich T, Döppner T, Braune J, Tiggesbäumker J and Meiwes-Broer K H2001 Phys. Rev. Lett.86 4807 [13] Thomas O C, Zheng W J, Xu S J and Bowen J K H2002 Phys. Rev. Lett.89 213403 [14] Jellinek J and Acioli P H2002 J. Phys. Chem. A106 10919 [15] Acioli P H and Jellinek J2002 Phys. Rev. Lett.89 213402 [16] Duanmu K, Roberto-Neto O, Machado F B C, Hansen J A, Shen J, Piecuch P and Truhlar D G2016 J. Phys. Chem. C120 13275 [17] Xia X X, Kuang X Y, Lu C, Jin Y Y, Xing X D, Merino G and Hermann A2016 J. Phys. Chem. A120 7947 [18] Heidari I, De S, Ghazi S M, Goedecker S and Kanhere D G2011 J. Phys. Chem. A115 12307 [19] Janecek S, Krotscheck E, Liebrecht M and Wahl R2011 Eur. Phys. J. D63 377 [20] De S, Ghasemi A A, Willand A, Genovese L, Kanhere D and Goedecher S2011 J. Chem. Phys.134 124302 [21] Knight W D, Clemenger K, de Heer Saunders W A, Chou M Y and Cohen M L1984 Phys. Rev. Lett.52 2141 [22] Chen X F, Zhang Y, Qi K T, Li B, Zhu Z H and Sheng Y2010 Chin. Phys. B19 033601 [23] Li J, Liu X Y, Zhu Z H and Sheng Y2012 Chin. Phys. B21 033101 [24] Xi S G, Li Q Y, Hu Y F, Yuan Y Q, Zhao Y R, Yuan J J, Li M C and Yang Y J2022 Chin. Phys. B31 016106 [25] Li Q Y, Xi S G, Hu Y F, Yuan Y Q, Zhao Y R, Li M C, Yuan J J and Yang Y J2021 Comput. Mater. Sci.197 110605 [26] Zhu B C, Deng P J, Guo J and Kang W B2022 Front. Chem.10 870985 [27] Zhu B C, Bao L, Deng P J, Zeng L, Kang W B and Guo J2022 J. Chem. Phys.157 114303 [28] Medel V M, Reveles J U, Khanna S N, Chauhan V, Sen P and Castlemen A W2011 Proc. Natl. Acad. Sci. USA108 10062 [29] Ge G X, Han Y, Wan J G, Zhao J J and Wang G H2013 J. Chem. Phys.139 174309 [30] Ma X L, Liu S G and Huang S P2017 Int. J. Hydrog. Energy42 24797 [31] Zhao Y R, Xu Y Q, Chen P, Yuan Y Q, Qian Y and Li Q2021 Results Phys.26 104341 [32] Peng X, Liu W C, Wu G H, Ji H and Ding W J2022 J. Mater. Sci. Technol.99 193 [33] Ma X C, Jin S Y, Wu R Z, Wang J X, Wang G X, Krit B and Betsofen S2021 Trans. Nonferr. Matel. Soc.31 3228 [34] Rao B K and Jena P1988 Phys. Rev. B37 2867 [35] Fantcci P, Bonačić-Koutechý W P and Koutechý J1989 J. Chem. Phys.91 4229 [36] Deshpande M, Dhavale A, Zope R R, Chacko S and Kanhere D G2000 Phys. Rev. A62 063202 [37] Li C G, Cui Y Q, Tian H, Shao Q Q, Zhang J, Ren B Z and Yuan Y Q2021 Comput. Mater. Sci.200 110800 [38] Liu S H, Qi Y J, Jin Y Z, Wang Y Y, Liu C, Yang H and Zhang Z X2022 Comput. Mater. Sci.210 111440 [39] Wang Y C, Lv J, Zhu L and Ma Y M2010 Phys. Rev. B82 094116 [40] Lv J, Wang Y C, Zhu L and Ma Y M2012 J. Chem. Phys.137 084104 [41] Tong Q C, Lv J, Gao P Y and Wang Y C2019 Chin. Phys. B28 106105 [42] Zhao Y R, Bai T T, Jia L N, Xin W, Hu Y F, Zheng X S and Hou S T2019 J. Phys. Chem. C123 28561 [43] Lu C, Gong W G, Li Q and Chen C F2020 J. Phys. Chem. Lett.11 9165 [44] Li C G, Li H J, Cui Y Q, Tian H, Shao Q Q, Zhang J, Zhao G, Ren B Z and Hu Y F2021 J. Mol. Liq.339 116764 [45] Zeng L, Wei X F, Liang M K, Deng P J, Bi J and Zhu B C2020 Comput. Mater. Sci.182 109795 [46] Li Z, Zhao Z, Zhou Z H, Wang H B and Li S L2017 Mater. Chem. Phys.199 585 [47] Dou X L, Kuang X Y, Sun W G, Jiang G, Lu C and Hermann A2021 Phys. Rev. B104 224510 [48] Peng F, Yao T S, Liu H Y and Ma Y M2015 J. Phys. Chem. Lett.6 2363 [49] Li C G, Cui Y Q, Tian H, Ren B Z, Li Q Y, Li Y Y and Yang H2022 Nanomaterials12 1654 [50] Jin W Y, Sun W G, Kuang X Y, Lu C and Kou L Z2020 J. Phys. Chem. Lett.11 9643 [51] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision D.01 (Wallingford CT: Gaussian Inc.) [52] Gordon M S, Binkley J S, Pople J A, Pietro W J and Hehre W J1982 J. Am. Chem. Soc.104 2797 [53] Mclean A D and Chandler G S1980 J. Chem. Phys.72 5639 [54] Krishnan R, Binkley J S, Seeger R and Pople J A1980 J. Chem. Phys.72 650 [55] Lu T and Chen F W2012 J. Comput. Chem.33 580 [56] Koopmans T1943 Physica1 104 [57] Lyalin A G, Semenov S K, Solov'yov A V and Cherepkov N A2000 J. Phys. B33 3653 [58] Lyalin A G, Matveetsev A, Solov'yov I A and Solov'yov A V2003 Eur. Phys. J. D24 15 [59] Zubarev D Y and Boldyrev A I2008 Phys. Chem. Chem. Phys.10 5207
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.