Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 060303    DOI: 10.1088/1674-1056/acc521
GENERAL Prev   Next  

Energy shift and subharmonics induced by nonlinearity in a quantum dot system

Yuan Zhou(周圆)1,2, Gang Cao(曹刚)1,2, Hai-Ou Li(李海欧)1,2,†, and Guo-Ping Guo(郭国平)1,2,3
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Origin Quantum Computing Company Limited, Hefei 230026, China
Abstract  The presence of anticrossings induced by coupling between two states causes curvature in energy levels, yielding a nonlinearity in the quantum system. When the system is driven back and forth along the bending energy levels, subharmonic transitions and energy shifts can be observed, which would cause a significant influence as the system is applied to quantum computing. In this paper, we study a longitudinally driven singlet-triplet (ST) system in a double quantum dot (DQD) system, and illustrate the consequences of nonlinearity by driving the system close to the anticrossings. We provide a straightforward theory to quantitatively describe the energy shift and subharmonics caused by nonlinearity, and find good agreement between our theoretical result and the numerical simulation. Our results reveal the existence of nonlinearity in the vicinity of anticrossings and provide a direct way of analytically assessing its impact, which can be applied to other quantum systems without excessive labor.
Keywords:  quantum dot      quantum computing      nonlinear physics  
Received:  13 February 2023      Revised:  08 March 2023      Accepted manuscript online:  17 March 2023
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  78.47.jh (Coherent nonlinear optical spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074368, 92165207, 12034018 and 92265113), the Anhui Province Natural Science Foundation (Grant No. 2108085J03), and the USTC Tang Scholarship.
Corresponding Authors:  Hai-Ou Li     E-mail:  haiouli@ustc.edu.cn

Cite this article: 

Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平) Energy shift and subharmonics induced by nonlinearity in a quantum dot system 2023 Chin. Phys. B 32 060303

[1] Scully M O and Zubairy M S1997 Quantum Optics (Cambridge: Cambridge University Press)
[2] Boyd R2003 Nonlinear Optics (Elsevier Inc.)
[3] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D2019 Appl. Phys. Rev. 6 021318
[4] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A2010 Phys. Rev. Lett. 105 097401
[5] Maier S A and Atwater H A2005 J. Appl. Phys. 98 011101
[6] Kauranen M and Zayats A2012 Nat. Photonics 6 737
[7] Kacem N, Hentz S, Pinto D, Reig B and Nguyen V2009 Nanotechnology 20 275501
[8] Su Z J, Ying Y, Song X X, Zhang Z Z, Zhang Q H, Cao G, Li H O, Guo G C and Guo G P2021 Nanotechnology 32 155203
[9] Bachtold A, Moser J and Dykman M2022 Rev. Mod. Phys. 94 045005
[10] Zhou C, Wang L, Tu T, Han T Y, Li H O and Guo G P2013 Chin. Phys. Lett. 30 050301
[11] Chen B, Wang B, Cao G, Li H, Xiao M and Guo G2017 Sci. Bull. 62 712
[12] Zhang X, Li H O, Wang K, Cao G, Xiao M and Guo G P2018 Chin. Phys. B 27 020305
[13] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P2019 Natl. Sci. Rev. 6 32
[14] Wang K, Li H O, Xiao M, Cao G and Guo G P2018 Chin. Phys. B 27 090308
[15] Xu Y Q, Gu S S, Lin T, Wang B C, Li H O, Cao G and Guo G P2023 Sci. China: Phys., Mech. Astron. 66 237301
[16] Laird E A, Barthel C, Rashba E I, Marcus C M, Hanson M P and Gossard A C2009 Semicond. Sci. Technol. 24 064004
[17] Schroer M D, Petersson K D, Jung M and Petta J R2011 Phys. Rev. Lett. 107 176811
[18] Stehlik J, Schroer M D, Maialle M Z, Degani M H and Petta J R2014 Phys. Rev. Lett. 112 227601
[19] Scarlino P, Kawakami E, Ward D R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M2015 Phys. Rev. Lett. 115 106802
[20] Forster F, Mühlbacher M, Schuh D, Wegscheider W and Ludwig S2015 Phys. Rev. B 91 195417
[21] De A, Pryor C E and Flatté M E2009 Phys. Rev. Lett. 102 017603
[22] Pingenot J, Pryor C E and Flatté M E2011 Phys. Rev. B 84 195403
[23] Scarlino P, Kawakami E, Jullien T, Ward D R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M2017 Phys. Rev. B 95 165429
[24] Rashba E I2011 Phys. Rev. B 84 241305
[25] Danon J and Rudner M S2014 Phys. Rev. Lett. 113 247002
[26] Romhányi J, Burkard G and Pályi A2015 Phys. Rev. B 92 054422
[27] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S2018 Nat. Nanotechnol. 13 102
[28] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C2005 Science 309 2180
[29] Hendrickx N W, Franke D P, Sammak A, Scappucci G and Veldhorst M2020 Nature 577 487
[30] Yang C H, Leon R C C, Hwang J C C, Saraiva A, Tanttu T, Huang W, Camirand L J, Chan K W, Tan K Y, Hudson F E, Itoh K M, Morello A, Pioro-Ladriére M, Laucht A and Dzurak A S2020 Nature 580 350
[31] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E and Petta J R2022 Sci. Adv. 8 abn5130
[32] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M2022 Nature 601 343
[33] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G and Tarucha S2022 Nature 601 338
[34] Bloch F and Siegert A1940 Phys. Rev. 57 522
[35] Zhang T, Liu H, Gao F, Xu G, Wang K, Zhang X, Cao G, Wang T, Zhang J, Hu X, Li H O and Guo G P2021 Nano Lett. 21 3835
[36] Liu H, Zhang T, Wang K, Gao F, Xu G, Zhang X, Li S X, Cao G, Wang T, Zhang J, Hu X, Li H O and Guo G P2022 Phys. Rev. Appl. 17 044052
[37] Xu G, Li Y, Gao F, Li H O, Liu H, Wang K, Cao G, Wang T, Zhang J J, Guo G C and Guo G P2020 New J. Phys. 22 083068
[38] Winkler R2003 Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems vol. 191 (Heidelberg: Springer Berlin)
[39] Bravyi S, DiVincenzo D P and Loss D2011 Ann. Phys. 326 2793
[40] Rahav S, Gilary I and Fishman S2003 Phys. Rev. A 68 013820
[41] Goldman N and Dalibard J2014 Phys. Rev. X 4 031027
[42] Zhou Y, Gu S, Wang K, Cao G, Hu X, Gong M, Guo G C, Li H O and Guo G P2023 Phys. Rev. Appl. 19 044053
[43] Shirley J H1965 Phys. Rev. 138 B979
[44] Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G and Petta J R2018 Science 359 439
[45] Petersson K D, Petta J R, Lu H and Gossard A C2010 Phys. Rev. Lett. 105 246804
[46] Dial O E, Shulman M D, Harvey S P, Bluhm H, Umansky V and Yacoby A2013 Phys. Rev. Lett. 110 146804
[1] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[2] Adjusting amplitude of the stored optical solitons by inter-dot tunneling coupling in triple quantum dot molecules
Yin Wang(王胤), Si-Jie Zhou(周驷杰), Yong-He Deng(邓永和), and Qiao Chen(陈桥). Chin. Phys. B, 2023, 32(5): 054203.
[3] Delayed response to the photovoltaic performance in a double quantum dots photocell with spatially correlated fluctuation
Sheng-Nan Zhu(祝胜男), Shun-Cai Zhao(赵顺才), Lu-Xin Xu(许路昕), and Lin-Jie Chen(陈林杰). Chin. Phys. B, 2023, 32(5): 057302.
[4] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[5] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[6] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[7] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[8] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[9] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[10] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[11] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[12] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[13] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[14] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[15] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
No Suggested Reading articles found!