Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 126402    DOI: 10.1088/1674-1056/ac98a4
RAPID COMMUNICATION Prev   Next  

Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation

Tian-Shou Liang(梁添寿)1,2, Peng-Peng Shi(时朋朋)2,†, San-Qing Su(苏三庆)2,‡, and Zhi Zeng(曾志)3
1 School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
3 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
Abstract  Melting of crystalline material is a common physical phenomenon, yet it remains elusive owing to the diversity in physical pictures. In this work, we proposed a deep learning architecture to learn the physical states (solid- or liquid-phase) from the atomic trajectories of the bulk crystalline materials with four typical lattice types. The method has ultra-high accuracy (higher than 95%) for the classification of solid-liquid atoms during the phase transition process and is almost insensitive to temperature. The atomic physical states are identified from atomic behaviors without considering any characteristic threshold parameter, which yet is necessary for the classical methods. The phase transition of bulk crystalline materials can be correctly predicted by learning from the atomic behaviors of different materials, which confirms the close correlation between atomic behaviors and atomic physical states. These evidences forecast that there should be a more general undiscovered physical quantity implicated in the atomic behaviors and elucidate the nature of bulk crystalline melting.
Keywords:  melting phase transition      crystalline materials      physical states      deep learning      molecular dynamics simulation  
Received:  21 July 2022      Revised:  06 October 2022      Accepted manuscript online:  10 October 2022
PACS:  64.60.-i (General studies of phase transitions)  
  64.60.A- (Specific approaches applied to studies of phase transitions)  
  64.70.D- (Solid-liquid transitions)  
  64.70.dj (Melting of specific substances)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2019M663935XB), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-261), and the National Natural Science Foundation of China (Grant Nos. 11802225 and 51878548).
Corresponding Authors:  Peng-Peng Shi, San-Qing Su     E-mail:  shipengpeng@xjtu.edu.cn;sussqx@xauat.edu.cn

Cite this article: 

Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志) Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation 2022 Chin. Phys. B 31 126402

[1] Cahn R W 1978 Nature 273 491
[2] Ihm Y, Cho D H, Sung D, et al. 2019 Nat. Commun. 10 2411
[3] Wang L N, Zhao X Yu, Zhou H W, Zhang Li and Huang Y N 2019 Chin. Phys. B 28 96401
[4] Fujinaga T and Shibuta Y 2019 Comp. Mater. Sci. 164 74
[5] Kavousi S, Novak B R, Zaeem M A and Moldovan D 2019 Comp. Mater. Sci. 163 218
[6] Ueno K and Shibuta Y 2019 Comp. Mater. Sci. 167 1
[7] Shao M Z, Wang Y T and Zhou X 2020 Chin. Phys. B 29 80505
[8] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[9] Stukowski A 2012 Model. Simul. Mater. Sc. 20 450214
[10] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[11] Maras E, Trushin O, Stukowski A, Ala-Nissila T and Jónsson H 2016 Comput. Phys. Commun. 205 13
[12] Lümmen N and Kraska T 2007 Model. Simul. Mater. Sc. 15 319
[13] Larsen P M, Schmidt S and Schiotz J 2016 Model. Simul. Mater. Sc. 24 55007
[14] Lindemann F A 1910 Z. Phys. 11 609
[15] Guardiola R and Navarro J 2011 J. Phys. Chem. A 115 6843
[16] Weber T A and Stillinger F H 1980 Phys. Rev. B 22 3790
[17] Jin Z H, Gumbsch P, Lu K and Ma E 2001 Phys. Rev. Lett. 87 557035
[18] Fan X, Pan D and Li M 2020 Acta Mater. 193 280
[19] Liang T S, Zhou D J, Wu Z H and Shi P P 2017 Nanotechnology 28 485704
[20] Vopson M M, Rogers N and Hepburn I 2020 Solid State Commun. 318 113977
[21] Liu Y, Zou X X, Yang Z W and Shi S Q 2022 J. Chin. Chem. Soc. 50 863
[22] Liu Y, Guo B R, Zou X X, Li Y J and Shi S Q 2020 Energy Stor. Mater. 31 434
[23] Zhang J, Liu Y M and Tu Z C 2022 Chin. Phys. B 31 94502
[24] Pu J C, Li J and Chen Y 2021 Chin. Phys. B 30 60202
[25] Fukuya T and Shibuta Y 2020 Comp. Mater. Sci. 184 109880
[26] Freitas R and Reed E J 2020 Nat. Commun. 11 3260
[27] Zeni C, Rossi K, Pavloudis T, et al. 2021 Nat. Commun. 2 6056
[28] Chibani S and Coudert F X 2020 Apl. Mater. 8 80701
[29] Parrinello M and Behler J 2007 Phys. Rev. Lett. 98 146401
[30] Lin F J, Liao J J, Wu J C and Ai B Q 2022 Chin. Phys. B 31 36401
[31] Szegedy C, Liu W, Jia Y Q, et al. 2014 arXiv:1409.4842[cs.CV].
[32] Foiles S M, Baskes M I and Daw M S 1986 Phys. Rev. B 33 7983
[33] Mendelev M I, Han S, Srolovitz D J, et al. 2003 Philos. Mag. 83 3977
[34] Mendelev M I, Becker C A, Kudin K, et al. 2006 Phys. Rev. B 73 24116
[35] Weber T A and Stillinger F H 1985 Phys. Rev. B 31 5262
[36] Onat B and Durukanoglu S 2013 J. Phys. Condens. Matter 26 35404
[37] Plimpton S 1995 J. Comput. Phys. 117 1
[38] Einstein 1905 Ann. d. Phys. 17 549
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[5] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[8] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[9] Fringe removal algorithms for atomic absorption images: A survey
Gaoyi Lei(雷高益), Chencheng Tang(唐陈成), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2022, 31(5): 050313.
[10] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[11] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[14] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!