Special Issue:
SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
|
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University |
Prev
Next
|
|
|
Electronic and thermal properties of Ag-doped single crystal zinc oxide via laser-induced technique |
Huan Xing(邢欢)1, Hui-Qiong Wang(王惠琼)1,2,†, Tinglu Song(宋廷鲁)3,‡, Chunli Li(李纯莉)4, Yang Dai(戴扬)5, Gengming Fu(傅耿明)1, Junyong Kang(康俊勇)1, and Jin-Cheng Zheng(郑金成)1,2,§ |
1 Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education;Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, China; 2 Department of Physics and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 439000, Malaysia; 3 Experimental Center of Advanced Materials, School of Materials Science&Engineering, Beijing Institute of Technology, Beijing 100081, China; 4 School of Material Science&Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; 5 Department of Chemical Engineering, School of Environmental and Chemical Engineering, and Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China |
|
|
Abstract The doping of ZnO has attracted lots of attention because it is an important way to tune the properties of ZnO. Post-doping after growth is one of the efficient strategies. Here, we report a unique approach to successfully dope the single crystalline ZnO with Ag by the laser-induced method, which can effectively further post-treat grown samples. Magnetron sputtering was used to coat the Ag film with a thickness of about 50 nm on the single crystalline ZnO. Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was chosen to irradiate the Ag-capped ZnO samples, followed by annealing at 700 ℃ for two hours to form ZnO:Ag. The three-dimensional (3D) information of the elemental distribution of Ag in ZnO was obtained through time-of-flight secondary ion mass spectrometry (TOF-SIMS). TOF-SIMS and core-level x-ray photoelectron spectroscopy (XPS) demonstrated that the Ag impurities could be effectively doped into single crystalline ZnO samples as deep as several hundred nanometers. Obvious broadening of core level XPS profiles of Ag from the surface to depths of hundred nms was observed, indicating the variance of chemical state changes in laser-induced Ag-doped ZnO. Interesting features of electronic mixing states were detected in the valence band XPS of ZnO:Ag, suggesting the strong coupling or interaction of Ag and ZnO in the sample rather than their simple mixture. The Ag-doped ZnO also showed a narrower bandgap and a decrease in thermal diffusion coefficient compared to the pure ZnO, which would be beneficial to thermoelectric performance.
|
Received: 23 November 2022
Revised: 22 December 2022
Accepted manuscript online: 27 December 2022
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
81.05.Dz
|
(II-VI semiconductors)
|
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3605403). |
Corresponding Authors:
Hui-Qiong Wang, Tinglu Song, Jin-Cheng Zheng
E-mail: hqwang@xmu.edu.cn;song@bit.edu.cn;jczheng@xmu.edu.cn
|
Cite this article:
Huan Xing(邢欢), Hui-Qiong Wang(王惠琼), Tinglu Song(宋廷鲁), Chunli Li(李纯莉), Yang Dai(戴扬), Gengming Fu(傅耿明), Junyong Kang(康俊勇), and Jin-Cheng Zheng(郑金成) Electronic and thermal properties of Ag-doped single crystal zinc oxide via laser-induced technique 2023 Chin. Phys. B 32 066107
|
[1] Look D C2001 Mater. Sci. Eng. B 80 383 [2] Wang Z L 2004 J. Phys.: Condens. Mater. 16 R829 [3] Hu J Q, Bando Y, Zhan J H, Li Y B and Sekiguchi T2003 Appl. Phys. Lett. 83 4414 [4] Shen X, Allen P B, Muckerman J T, Davenport J W and Zheng J C2007 Nano Lett. 7 2267 [5] Liu J, Xu Y and Yi F2022 Sensor. Actuat. A-Phys. 345 113665 [6] Fulati A, Ali S M U, Riaz M, Amin G, Nur O and Willander M2009 Sensors 9 8911 [7] Kim S W, Ueda M, Kotani T, Fujita S and Fujita S 2003 Appl. Phys. Lett 83 3593 [8] Li W, Wu X, Han N, Chen J, Qian X, Deng Y, Tang W and Chen Y2016 Sensors Actuat. B-Chem. 225 158 [9] Ding Y, Kong X Y and Wang Z L2004 Phys. Rev. B 70 235408 [10] Zhou H, Wu L, Wang H Q, Zheng J C, Zhang L, Kisslinger K, Li Y, Wang Z, Cheng H, Ke S, Li Y, Kang J and Zhu Y2017 Nat. Commun. 8 1474 [11] Zhou H, Wang H Q, Zheng J C, Wang X D, Zhang Y, Kang J, Zhang L, Kisslinger K, Wu R, Wang J O, Qian H J and Ibrahim K2021 Appl. Surf. Sci. 570 151189 [12] Liang X, Zhou H, Wang H Q, Zhang L, Kisslinger K and Kang J2021 Chin. Phys. B 30 096107 [13] Qi K, Xing X H, Jung D Y, Zada A, Li M Y, Wang Q, Liu S Y, Lin H X and Wang G Z2020 Ceram. Int. 46 1494 [14] Selim F A, Tarun M C, Wall D E, Boatner L A and McCluskey M D2012 Appl. Phys. Lett. 99 202109 [15] Ma Z H, Ren F Z, Ming X L, Long Y Q and Volinsky A A2019 Materials 12 196 [16] Tang K, Gu S L, Ye J D, Zhu S M, Zhang R and Zheng Y D2017 Chin. Phys. B 26 047702 [17] De Lourdes Ruiz Peralta M, Pal U, and Sanchez Zeferino R2012 ACS Appl. Mater. Interfaces 4 4807 [18] Ma L, Zhang Q, Li J, Lu X, Gao C, Song P and Xia L2021 Materials 14 992 [19] Ahn D B, Kang H S, Kim J H, Kim G H, Chang H W and Lee S Y2006 J. Appl. Phys. 100 093701 [20] Swapna R and Santhosh Kumar M C2013 Ceram. Int. 39 1799 [21] Chen R, Fan B, Pan M, Cheng Q and Chen C2016 Mater. Lett. 163 90 [22] Aoki T, Hatanaka Y and Look D C2000 Appl. Phys. Lett. 76 3257 [23] Choi I, Jeong H Y, Jung D Y, Byunc M, Choi C G, Hong B H and Choi S Y and Lee K J2014 ACS Nano 8 7671 [24] Tian Z, Slama I A, Quick N R and Kar A2005 Acta Mater. 53 2835 [25] Chizhik A B, Davidenko I I, Maziewski A and Stupakiewicz A1998 Phys. Rev. B 57 14366 [26] He J, Zhao L D, Zheng J C, Doak J W, Wu H, Wang H Q, Lee Y, Wolverton C, Kanatzidis M G and Dravid V P2013 J. Am. Chem. Soc. 135 4624 [27] He J, Blum I D, Wang H Q, Girard S N, Doak J, Zhao L D, Zheng J C, Casillas G, Wolverton C, Jose-Yacaman M, Seidman D N, Kanatzidis M G and Dravid V P2012 Nano Lett. 12 5979 [28] He J, Sootsman J R, Girard S N, Zheng J C, Wen J, Zhu Y, Kanatzidis M G and Dravid V P2010 J. Am. Chem. Soc. 132 8669 [29] He J, Sootsman J R, Xu L Q, Girard S N, Zheng J C, Kanatzidis M G and Dravid V P2011 J. Am. Chem. Soc. 133 8786 [30] Zheng J C2022 Research 2022 9867639 [31] Li J, Li Y, Li S, Zhu M, Zhang J, Li Y, He Y and Li W2020 Ceram. Inter. 46 18639 [32] Habibi M H and Sheibani R2010 J. Sol-Gel Sci. Techn. 54 195 [33] Yıldırım Ö A, Unalan H E, Durucan C and Klein L 2013 J. Am. Chem. Soc. 96 766 [34] Gerrard N L, Coultas S J and Counsell J D P2022 Surf. Sci. Spectra 29 014009 [35] Tao J, Lu H L, Gu Y, Ma H P, Li X, Chen J X, Liu W J, Zhang H and Feng J J2019 Appl. Surf. Sci. 476 733 [36] Li Y, Wang H Q, Ibrahim K, Wang J O, Wu R, Qian H J, Wang H, Lei T, Wang Z, Li X, Wu M, Zheng J C, Kang J, Zhang L, Kisslinger K, Wu L and Zhu Y2020 Phys. Rev. Mater. 4 124601 [37] Xie F W, Yang P, Li P and Zhang L Q2012 Opt. Commun. 285 2660 [38] Zhang X D, Guo M L, Shen Y Y, Liu C L, Xue Y H, Zhu F and Zhang L H2012 Comp. Mater. Sci. 54 75 [39] Poduval G K, Duan L, Hossain M A, Sang B, Zhang Y, Zou Y, Uddin A and Hoex B2020 Solar RRL 4 2000241 [40] Wang H Q, Xu J Y, Lin X Y, Li Y P, Kang J Y and Zheng J C2021 Light Sci. Appl. 10 153 [41] Zheng J C2008 Front. Phys. China 3 269 [42] Ohtaki M, Tsubota T, Eguchi K and Arai H1996 J. Appl. Phys. 79 1816 [43] Snyder G J and Toberer E S2008 Nat. Matter. 7 105 [44] Delorme F, Diaz-Chao P, Guilmeau E and Giovannelli F2015 Cerma. Int. 41 10038 [45] Li X J, Li N, Ren F, Wang K H, Koh C L, Wu M, Wang H Q and Zheng J C2018 J. Mater. Sci. 53 13955 [46] Du F Y, Zhang W, Wang H Q and Zheng J C2023 Chin. Phys. B 32 064402 [47] Wang X D, Zhou H, Wang H Q, Ren F, Chen X H, Zhan H H, Zhou Y H and Kang J Y2015 Chin. Phys. B 24 097106 [48] Zheng J C and Davenport J W2004 Phys. Rev. B 69 144415 [49] Zhu Y and Zheng J C2006 Phys. Rev. B 73 024509 [50] Huang Z, Lü T Y, Wang H Q, Yang S W and Zheng J C2017 Comput. Mater. Sci. 130 232 [51] Cheng H and Zheng J C2021 Front. Phys. 16 43505 [52] Li J J, Dai Y and Zheng J C2022 Front. Phys. 17 13503 [53] Li D H, Wang H Q, Zhou H, Li Y P, Huang Z, Zheng J C, Wang J O, Qian H J, Ibrahim K, Chen X, Zhan H, Zhou Y and Kang J2016 Chin. Phys. B 25 076105 [54] Liang X, Zhou H, Wang H Q, Zhang L, Kisslinger K and Kang J2021 Chin. Phys. B 30 096107 [55] Liao X X, Wang H Q and Zheng J C2013 J. Am. Ceram. Soc. 96 538 [56] Zeng H, Wu M, Wang H Q, Zheng J C and Kang J2020 Materials 13 5686 [57] Zeng H, Wu M, Wang H Q, Zheng J C and Kang J2021 Front. Phys. 16 43501 [58] Zheng J C, Wu L, Zhu Y and Davenport J W2005 J. Appl. Crystallogr. 38 648 [59] Zheng J C, Wu L and Zhu Y2009 J. Appl. Crystallogr. 42 1043 [60] Zheng J C, Frenkel A I, Wu L, Hanson J, Ku W, Božin E S, Billinge S J L and Zhu Y2010 Phys. Rev. B 81 144203 [61] Zheng J C and Wang H Q 2021 Sci. China Phys. Mech. 51 030007 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|