Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024703    DOI: 10.1088/1674-1056/ac3811
RAPID COMMUNICATION Prev   Next  

Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure

Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明)
State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Abstract  We design a nanostructure composing of two nanoscale graphene sheets parallelly immersed in water. Using molecular dynamics simulations, we demonstrate that the wet/dry state between the graphene sheets can be self-latched; moreover, the wet→dry/dry→wet transition takes place when applying an external electric field perpendicular/parallel to the graphene sheets (E/E||). This structure works like a flash memory device (a non-volatile memory):the stored information (wet and dry states) of the system can be kept spontaneously, and can also be rewritten by external electric fields. On the one hand, when the distance between the two nanosheets is close to a certain distance, the free energy barriers for the transitions dry→wet and wet→dry can be quite large. As a result, the wet and dry states are self-latched. On the other hand, an E and an E|| will respectively increase and decrease the free energy of the water located in-between the two nanosheets. Consequently, the wet→dry and dry→wet transitions are observed. Our results may be useful for designing novel information memory devices.
Keywords:  wet/dry properties      non-volatile memory nanostructure      molecular dynamics simulations  
Received:  07 August 2021      Revised:  26 September 2021      Accepted manuscript online:  10 November 2021
PACS:  47.11.Mn (Molecular dynamics methods)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11704328).
Corresponding Authors:  Jianzhuo Zhu, Qiuming Peng     E-mail:  zhujz@ysu.edu.cn;pengqiuming@ysu.edu.cn

Cite this article: 

Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明) Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure 2022 Chin. Phys. B 31 024703

[1] Levy Y and Onuchic J N 2006 Annu. Rev. Biophys. Biomol. Struct. 35 389
[2] Karan S, Samitsu S, Peng X S, Kurashima K and Ichinose I 2012 Science 335 444
[3] Liu H H, Yu X, Chen Y Q, Zhang J, Wu B X, Zheng L N, Haruehanroengra P, Wang R, Li S H, Lin J Z, Li J X, Sheng J, Huang Z, Ma J B and Gan J H 2017 Nat. Commun. 8 2006
[4] Castillejos E, Debouttiere P J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B and Serp P 2009 Angew. Chem., Int. Ed. 48 2529
[5] Zhang S F, Zhang B, Liang H J, Liu Y Q, Qiao Y and Qin Y 2018 Angew. Chem., Int. Ed. 57 1091
[6] Beckstein O, Biggin P C and Sansom M S P 2001 J. Phys. Chem. B 105 12902
[7] Beckstein O and Sansom M S P 2003 Proc. Natl. Acad. Sci. USA 100 7063
[8] Lin D C, Liu Y Y and Cui Y 2017 Nat. Nanotechnol. 12 194
[9] Zhang X Q, Liu H L and Jiang L 2019 Adv. Mater. 31 1804508
[10] Chen J Z, Wu D X, Walter E, Engelhard M, Bhattacharya P, Pan H L, Shao Y Y, Gao F, Xiao J and Liu J 2015 Nano Energy 13 267
[11] Lin D C, Liu Y Y, Liang Z, Lee H W, Sun J, Wang H T, Yan K, Xie J and Cui Y 2016 Nat. Nanotechnol. 11 626
[12] Khalil A, Rostami P, Auernhammer G K and Andrieu-Brunsen A 2021 Adv. Mater. Interfaces 8 2100252
[13] Ceratti D R, Faustini M, Sinturel C, Vayer M, Dahirel V, Jardat M and Grosso D 2015 Nanoscale 7 5371
[14] Urteaga R, Mercuri M, Gimenez R, Bellino M G and Berli C L A 2019 J. Colloid. Interface Sci. 537 407
[15] Mercuri M, Pierpauli K, Bellino M G and Berli C L A 2017 Langmuir 33 152
[16] Xiao K, Zhou Y, Kong X-Y, Xie G, Li P, Zhang Z, Wen L and Jiang L 2016 ACS Nano 10 9703
[17] Revilla R I, Guan L, Zhu X Y, Quan B G, Yang Y L and Wang C 2012 J. Phys. Chem. C 116 14311
[18] Yu X M, Qi C H and Wang C L 2018 Chin. Phys. B 27 60101
[19] Wang Y, Yu X, Wan X, Yang N and Deng C 2021 Chin. Phys. Lett. 38 94401
[20] Hu H B, Chen L B, Bao L Y and Huang S H 2014 Chin. Phys. B 23 074702
[21] Choudhury N and Pettitt B M 2007 J. Am. Chem. Soc. 129 4847
[22] Li J, Liu T, Li X, Ye L, Chen H, Fang H, Wu Z and Zhou R 2005 J. Phys. Chem. B 109 13639
[23] Li X, Li J, Eleftheriou M and Zhou R 2006 J. Am. Chem. Soc. 128 12439
[24] Huang X, Margulis C J and Berne B J 2003 Proc. Natl. Acad. Sci. USA 100 11953
[25] Huang X, Zhou R and Berne B J 2005 J. Phys. Chem. B 109 3546
[26] Choudhury N 2008 J. Phys. Chem. B 112 6296
[27] Bratko D, Daub C D, Leung K and Luzar A 2007 J. Am. Chem. Soc. 129 2504
[28] Hua L, Zangi R and Berne B J 2009 J. Phys. Chem. C 113 5244
[29] Ren X, Wang C, Zhou B, Fang H, Hu J and Zhou R 2013 Soft Matter 9 4655
[30] Vaitheeswaran S, Yin H and Rasaiah J C 2005 J. Phys. Chem. B 109 6629
[31] Vanzo D, Bratko D and Luzar A 2015 J. Phys. Chem. B 119 8890
[32] England J L, Park S and Pande V S 2008 J. Chem. Phys. 128 044503
[33] Chialvo A A, Vlcek L and Cummings P T 2013 J. Phys. Chem. C 117 23875
[34] Jorgensen W L, Maxwell D S and Tirado-Rives J 1996 J. Am. Chem. Soc. 118 11225
[35] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[36] Feng G, Qiao R, Huang J, Sumpter B G and Meunier V 2010 ACS Nano 4 2382
[37] Ho T A and Striolo A 2015 J. Phys. Chem. C 119 3331
[38] Kalluri R K, Ho T A, Biener J, Biener M M and Striolo A 2013 J. Phys. Chem. C 117 13609
[39] Bo Z, Yang H, Zhang S, Yang J, Yan J and Cen K 2015 Scientific Reports 5 14652
[40] Kalluri R K, Konatham D and Striolo A 2011 J. Phys. Chem. C 115 13786
[41] Yeh I C and Berkowitz M L 2000 J. Chem. Phys. 112 10491
[42] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1-2 19
[43] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[44] Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[45] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[46] Ashbaugh H S and Paulaitis M E 2001 J. Am. Chem. Soc. 123 10721
[47] Jedlovszky P, Brodholt J P, Bruni F, Ricci M A, Soper A K and Vallauri R 1998 J. Chem. Phys. 108 8528
[48] Cao Z, Peng Y, Li S, Liu L and Yan T 2009 J. Phys. Chem. C 113 3096
[1] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[2] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[3] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[4] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[5] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[6] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[7] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[8] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[9] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[10] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[11] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[12] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
[13] Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer
Bin Xu(徐斌), Wen-Qiang Lin(林文强), Xiao-Gang Wang(汪小刚), Song-wei Zeng(曾松伟), Guo-Quan Zhou(周国泉), Jun-Lang Chen(陈均朗). Chin. Phys. B, 2017, 26(3): 033103.
[14] Nano watermill driven by revolving charge
Zhou Xiao-Yan (周晓艳), Kou Jian-Long (寇建龙), Nie Xue-Chuan (聂雪川), Wu Feng-Min (吴锋民), Liu Yang (刘扬), Lu Hang-Jun (陆杭军). Chin. Phys. B, 2015, 24(7): 074702.
[15] Crystallization of polymer chains induced by graphene:Molecular dynamics study
Yang Jun-Sheng (杨俊升), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Li Qiang (李强), Wang Li-Zhi (王立志), Wang Fan-Hou (王藩侯). Chin. Phys. B, 2013, 22(9): 098101.
No Suggested Reading articles found!