|
|
Relaxation of Ne1+ 1s02s22p6np produced by resonant excitation of an ultraintense ultrafast x-ray pulse |
Jie Yan(闫杰)1, Yanpeng Liu(刘彦鹏)2, Yong Hou(侯永)1, Cheng Gao(高城)1,†, Jianhua Wu(吴建华)1,‡, Jiaolong Zeng(曾交龙)1,3, and Jianmin Yuan(袁建民)1,4 |
1 Department of Physics, College of Science, National University of Defense Technology, Changsha 410073, China; 2 State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an 710000, China; 3 College of Science, Zhejiang University of Technology, Hangzhou 310023, China; 4 Graduate School of China Academy of Engineering Physics, Beijing 100193, China |
|
|
Abstract The creation and relaxation of double $K$-hole states ${\rm 1s}^0{\rm 2s}^22{\rm p}^6n$p ($n\geq3$) of Ne$^{1+}$ in the interaction with ultraintense ultrafast x-ray pulses are theoretically investigated. The x-ray photon energies are selected so that x-rays first photoionize ${\rm 1s}^22{\rm s}^22{\rm p}^6$ of a neon atom to create a single $K$-hole state of ${\rm 1s}2{\rm s}^22{\rm p}^6$of Ne$^{1+}$, which is further excited resonantly to double $K$-hole states of $1{\rm s}^02{\rm s}^22{\rm p}^6n$p ($n\geq3$). A time-dependent rate equation is used to investigate the creation and relaxation processes of $1{\rm s}^02{\rm s}^22{\rm p}^6n$p, where the primary microscopic atomic processes including photoexcitation, spontaneous radiation, photoionization and Auger decay are considered. The calculated Auger electron energy spectra are compared with recent experimental results, which shows good agreement. The relative intensity of Auger electrons is very sensitive to the photon energy and bandwidth of x-ray pulses, which could be used as a diagnostic tool for x-ray free electron laser and atom experiments.
|
Received: 10 January 2023
Revised: 04 March 2023
Accepted manuscript online: 14 March 2023
|
PACS:
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
32.80.Aa
|
(Inner-shell excitation and ionization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074430 and 11974423). |
Corresponding Authors:
Cheng Gao, Jianhua Wu
E-mail: gaocheng@nudt.edu.cn;jianhuawu@nudt.edu.cn
|
Cite this article:
Jie Yan(闫杰), Yanpeng Liu(刘彦鹏), Yong Hou(侯永), Cheng Gao(高城), Jianhua Wu(吴建华), Jiaolong Zeng(曾交龙), and Jianmin Yuan(袁建民) Relaxation of Ne1+ 1s02s22p6np produced by resonant excitation of an ultraintense ultrafast x-ray pulse 2023 Chin. Phys. B 32 063101
|
[1] Young L, Kanter E P, Krässig B, et al.2010 Nature 466 56 [2] Rudek B, Son S K, Foucar L, et al.2012 Nat. Photon. 6 858 [3] Fang L, Hoener M, Gessner O, Tarantelli F, Pratt S T, Kornilov O, Buth C, Gühr M, Kanter E P, Bostedt C, Bozek J D, Bucksbaum P H, Chen M, Coffee R, Cryan J, Glownia M, Kukk E, Leone S R and Berrah N2010 Phys. Rev. Lett. 105 083005 [4] Rudenko A, Inhester L, Hanasaki K, et al.2017 Nature 546 129 [5] Thomas H, Helal A, Hoffmann K, et al.2012 Phys. Rev. Lett 108 133401 [6] Ziaja B, Wabnitz H, Wang F, Weckert E and Möller T2009 Phys. Rev. Lett. 102 205002 [7] Vinko S M, Ciricosta O, Cho B I, et al.2012 Nature 482 59 [8] Cho B I, Cho M S, Kim M, et al.2017 Phys. Rev. Lett. 119 075002 [9] Ueda K, Sokell E, Schippers S, et al.2019 J. Phys. B: At. Mol. Opt. Phys. 52 171001 [10] Emma P, Akre R, Arthur J, et al.2010 Nat. Photon. 4 641 [11] Tschentscher T, Bressler C, Grünert J, Madsen A, Mancuso A P, Meyer M, Scherz A, Sinn H and Zastrau U2017 Appl. Sci. 7 592 [12] Ishikawa T, Aoyagi H, Asaka T, et al.2012 Nat. Photon. 6 540 [13] Berrah N and Fang L2015 J. Electron Spectrosc. Relat. Phenom. 204 284 [14] Buth C, Liu J C, Chen M H, Cryan J P, Fang L, Glownia J M, Hoener M, Coffee R N and Berrah N2012 J. Chem. Phys. 136 214310 [15] Gao C, Zeng J L and Yuan J M2016 J. Phys. B: At. Mol. Opt. Phys. 49 044001 [16] Seddon E A, Clarke J A, Dunning D J, Masciovecchio C, Milne C J, Parmigiani F, Rugg D, Spence J C H, Thompson N R, Ueda K, Vinko S M, Wark J S and Wurth W2017 Rep. Prog. Phys. 80 115901 [17] Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Bobert A, Schlotter W F, Turner J J and Williams G J2016 Rev. Mod. Phys. 88 015007 [18] Young L, Ueda K, Gühr M, et al.2018 J. Phys. B: At. Mol. Opt. Phys. 51 032003 [19] Bostedt C, Bozek J D, Bucksbaum P H, et al.2013 J. Phys. B: At. Mol. Opt. Phys. 46 164003 [20] Johnson P M and Otis C E1981 Annu. Rev. Phys. Chem. 32 139 [21] Xiang W J, Gao C, Fu Y S, Zeng J L and Yuan J M2012 Phys. Rev. A 86 061401 [22] Toyota K, Son S K and Santra R2017 Phys. Rev. A 95 043412 [23] Ho P J, Bostedt C, Schorb S and Young L2014 Phys. Rev. Lett. 113 253001 [24] LaForge A C, Son S K, Mishra D, Ilchen M, Duncanson S, Eronen E, Kukk E, Wirok-Stoletow S, Kolbasova D, Walter P, Boll R, De Fanis A, Meyer M, Ovcharenko Y, Rivas D E, Schmidt P, Usenko S, Santra R and Berrah N2021 Phys. Rev. Lett. 127 213202 [25] Mazza T, Ilchen M, Kiselev M D, et al.2020 Phys. Rev. X 10 041056 [26] Li Y Q, Gao C, Dong W P, Zeng J L, Zhao Z X and Yuan J M2016 Sci. Rep. 6 18529 [27] Cavaletto S M, Buth C, Harman Z, Kanter E P, Southworth S H, Young L and Keitel C H, et al.2012 Phys. Rev. A 86 033402 [28] Rohringer N and Santra R2007 Phys. Rev. A 76 033416 [29] Peyrusse O, Deschaud B and Rolles D2014 J. Phys. B: At. Mol. Opt. Phys. 47 011001 [30] Son S K and Santra R2012 Phys. Rev. A 85 063415 [31] Vartanyants I A, Singer A, Mancuso A P, et al.2011 Phys. Rev. Lett. 107 144801 [32] Lehmkühler F, Gutt C, Fischer B, Schroer M A, Sikorski M, Song S, Roseker W, Glownia J, Chollet M, Nelson S, Tono K, Katayama T, Yabashi M, Ishikawa T, Robert A and Grübel G2014 Sci. Rep. 4 5234 [33] Gao C, Zeng J L, Li Y Q, Jin F T and Yuan J M2013 High Energy Dens. Phys. 9 583 [34] Li Y, Krinsky S, Lewellen J W, Kim K J, Sajaev V and Milton S V2003 Phys. Rev. Lett. 91 243602 [35] Gu M F2008 Can. J. Phys. 86 675 [36] Li Y J, Liu L P, Gao C, Zeng J L and Yuan J M2018 J. Electron Spectrosc. Relat. Phenom. 226 26 [37] Müller A, Bernhardt D, Borovik A Jr., Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Seltmann J, Viefhaus J and Schippers S2017 Astrophys. J. 836 166 [38] Oura M2010 Plasma Sci. Technol. 12 353 [39] Burke P G, Hibbert A and Robb W D1971 J. Phys. B: At. Mol. Opt. Phys. 4 153 [40] Berrington K A, Burke P G, Butler K, Seaton M J, Storey P J, Taylor K T and Yan Y1987 J. Phys. B: At. Mol. Opt. Phys. 20 6379 [41] Liu Y P, Zeng J L and Yuan J M2013 J. Phys. B: At. Mol. Opt. Phys. 46 145002 [42] Hibbert A1975 Comput. Phys. Commun. 9 141 [43] Pelicon P, Čadež I, Žitnik M, Šmit Ž, Dolenc S, Mühleisen A and Hall R I2000 Phys. Rev. A 62 022704 [44] Bhalla C P, Folland N O and Hein M A1973 Phys. Rev. A 8 649 [45] Karim K R and Logan L1999 J. Quant. Spectrosc. Radiat. Transfer 61 659 [46] Goldsztejn G, Marchenko T, Püttner R, Jornel L, Guillemin R, Carniato S, Selles P, Travnikova O, Céolin D, Lago A F, Feifel R, Lablanquie P, Piancastelli M N, Penent F and Simon M2016 Phys. Rev. Lett. 117 133001 [47] Deng P and Jiang G2019 Chin. Phys. B 28 063203 [48] Huang X C, Kong X J, Li T J, Ma Z R, Wang H C, Liu G C, Wang Z S, Li W B and Zhu L F2021 Phys. Rev. Res. 3 033063 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|