Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 063101    DOI: 10.1088/1674-1056/acc3fa
RAPID COMMUNICATION Prev   Next  

Relaxation of Ne1+ 1s02s22p6np produced by resonant excitation of an ultraintense ultrafast x-ray pulse

Jie Yan(闫杰)1, Yanpeng Liu(刘彦鹏)2, Yong Hou(侯永)1, Cheng Gao(高城)1,†, Jianhua Wu(吴建华)1,‡, Jiaolong Zeng(曾交龙)1,3, and Jianmin Yuan(袁建民)1,4
1 Department of Physics, College of Science, National University of Defense Technology, Changsha 410073, China;
2 State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an 710000, China;
3 College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
4 Graduate School of China Academy of Engineering Physics, Beijing 100193, China
Abstract  The creation and relaxation of double $K$-hole states ${\rm 1s}^0{\rm 2s}^22{\rm p}^6n$p ($n\geq3$) of Ne$^{1+}$ in the interaction with ultraintense ultrafast x-ray pulses are theoretically investigated. The x-ray photon energies are selected so that x-rays first photoionize ${\rm 1s}^22{\rm s}^22{\rm p}^6$ of a neon atom to create a single $K$-hole state of ${\rm 1s}2{\rm s}^22{\rm p}^6$of Ne$^{1+}$, which is further excited resonantly to double $K$-hole states of $1{\rm s}^02{\rm s}^22{\rm p}^6n$p ($n\geq3$). A time-dependent rate equation is used to investigate the creation and relaxation processes of $1{\rm s}^02{\rm s}^22{\rm p}^6n$p, where the primary microscopic atomic processes including photoexcitation, spontaneous radiation, photoionization and Auger decay are considered. The calculated Auger electron energy spectra are compared with recent experimental results, which shows good agreement. The relative intensity of Auger electrons is very sensitive to the photon energy and bandwidth of x-ray pulses, which could be used as a diagnostic tool for x-ray free electron laser and atom experiments.
Keywords:  hollow atoms      x-ray resonant excitation      relaxation  
Received:  10 January 2023      Revised:  04 March 2023      Accepted manuscript online:  14 March 2023
PACS:  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  32.80.Aa (Inner-shell excitation and ionization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074430 and 11974423).
Corresponding Authors:  Cheng Gao, Jianhua Wu     E-mail:  gaocheng@nudt.edu.cn;jianhuawu@nudt.edu.cn

Cite this article: 

Jie Yan(闫杰), Yanpeng Liu(刘彦鹏), Yong Hou(侯永), Cheng Gao(高城), Jianhua Wu(吴建华), Jiaolong Zeng(曾交龙), and Jianmin Yuan(袁建民) Relaxation of Ne1+ 1s02s22p6np produced by resonant excitation of an ultraintense ultrafast x-ray pulse 2023 Chin. Phys. B 32 063101

[1] Young L, Kanter E P, Krässig B, et al.2010 Nature 466 56
[2] Rudek B, Son S K, Foucar L, et al.2012 Nat. Photon. 6 858
[3] Fang L, Hoener M, Gessner O, Tarantelli F, Pratt S T, Kornilov O, Buth C, Gühr M, Kanter E P, Bostedt C, Bozek J D, Bucksbaum P H, Chen M, Coffee R, Cryan J, Glownia M, Kukk E, Leone S R and Berrah N2010 Phys. Rev. Lett. 105 083005
[4] Rudenko A, Inhester L, Hanasaki K, et al.2017 Nature 546 129
[5] Thomas H, Helal A, Hoffmann K, et al.2012 Phys. Rev. Lett 108 133401
[6] Ziaja B, Wabnitz H, Wang F, Weckert E and Möller T2009 Phys. Rev. Lett. 102 205002
[7] Vinko S M, Ciricosta O, Cho B I, et al.2012 Nature 482 59
[8] Cho B I, Cho M S, Kim M, et al.2017 Phys. Rev. Lett. 119 075002
[9] Ueda K, Sokell E, Schippers S, et al.2019 J. Phys. B: At. Mol. Opt. Phys. 52 171001
[10] Emma P, Akre R, Arthur J, et al.2010 Nat. Photon. 4 641
[11] Tschentscher T, Bressler C, Grünert J, Madsen A, Mancuso A P, Meyer M, Scherz A, Sinn H and Zastrau U2017 Appl. Sci. 7 592
[12] Ishikawa T, Aoyagi H, Asaka T, et al.2012 Nat. Photon. 6 540
[13] Berrah N and Fang L2015 J. Electron Spectrosc. Relat. Phenom. 204 284
[14] Buth C, Liu J C, Chen M H, Cryan J P, Fang L, Glownia J M, Hoener M, Coffee R N and Berrah N2012 J. Chem. Phys. 136 214310
[15] Gao C, Zeng J L and Yuan J M2016 J. Phys. B: At. Mol. Opt. Phys. 49 044001
[16] Seddon E A, Clarke J A, Dunning D J, Masciovecchio C, Milne C J, Parmigiani F, Rugg D, Spence J C H, Thompson N R, Ueda K, Vinko S M, Wark J S and Wurth W2017 Rep. Prog. Phys. 80 115901
[17] Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Bobert A, Schlotter W F, Turner J J and Williams G J2016 Rev. Mod. Phys. 88 015007
[18] Young L, Ueda K, Gühr M, et al.2018 J. Phys. B: At. Mol. Opt. Phys. 51 032003
[19] Bostedt C, Bozek J D, Bucksbaum P H, et al.2013 J. Phys. B: At. Mol. Opt. Phys. 46 164003
[20] Johnson P M and Otis C E1981 Annu. Rev. Phys. Chem. 32 139
[21] Xiang W J, Gao C, Fu Y S, Zeng J L and Yuan J M2012 Phys. Rev. A 86 061401
[22] Toyota K, Son S K and Santra R2017 Phys. Rev. A 95 043412
[23] Ho P J, Bostedt C, Schorb S and Young L2014 Phys. Rev. Lett. 113 253001
[24] LaForge A C, Son S K, Mishra D, Ilchen M, Duncanson S, Eronen E, Kukk E, Wirok-Stoletow S, Kolbasova D, Walter P, Boll R, De Fanis A, Meyer M, Ovcharenko Y, Rivas D E, Schmidt P, Usenko S, Santra R and Berrah N2021 Phys. Rev. Lett. 127 213202
[25] Mazza T, Ilchen M, Kiselev M D, et al.2020 Phys. Rev. X 10 041056
[26] Li Y Q, Gao C, Dong W P, Zeng J L, Zhao Z X and Yuan J M2016 Sci. Rep. 6 18529
[27] Cavaletto S M, Buth C, Harman Z, Kanter E P, Southworth S H, Young L and Keitel C H, et al.2012 Phys. Rev. A 86 033402
[28] Rohringer N and Santra R2007 Phys. Rev. A 76 033416
[29] Peyrusse O, Deschaud B and Rolles D2014 J. Phys. B: At. Mol. Opt. Phys. 47 011001
[30] Son S K and Santra R2012 Phys. Rev. A 85 063415
[31] Vartanyants I A, Singer A, Mancuso A P, et al.2011 Phys. Rev. Lett. 107 144801
[32] Lehmkühler F, Gutt C, Fischer B, Schroer M A, Sikorski M, Song S, Roseker W, Glownia J, Chollet M, Nelson S, Tono K, Katayama T, Yabashi M, Ishikawa T, Robert A and Grübel G2014 Sci. Rep. 4 5234
[33] Gao C, Zeng J L, Li Y Q, Jin F T and Yuan J M2013 High Energy Dens. Phys. 9 583
[34] Li Y, Krinsky S, Lewellen J W, Kim K J, Sajaev V and Milton S V2003 Phys. Rev. Lett. 91 243602
[35] Gu M F2008 Can. J. Phys. 86 675
[36] Li Y J, Liu L P, Gao C, Zeng J L and Yuan J M2018 J. Electron Spectrosc. Relat. Phenom. 226 26
[37] Müller A, Bernhardt D, Borovik A Jr., Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Seltmann J, Viefhaus J and Schippers S2017 Astrophys. J. 836 166
[38] Oura M2010 Plasma Sci. Technol. 12 353
[39] Burke P G, Hibbert A and Robb W D1971 J. Phys. B: At. Mol. Opt. Phys. 4 153
[40] Berrington K A, Burke P G, Butler K, Seaton M J, Storey P J, Taylor K T and Yan Y1987 J. Phys. B: At. Mol. Opt. Phys. 20 6379
[41] Liu Y P, Zeng J L and Yuan J M2013 J. Phys. B: At. Mol. Opt. Phys. 46 145002
[42] Hibbert A1975 Comput. Phys. Commun. 9 141
[43] Pelicon P, Čadež I, Žitnik M, Šmit Ž, Dolenc S, Mühleisen A and Hall R I2000 Phys. Rev. A 62 022704
[44] Bhalla C P, Folland N O and Hein M A1973 Phys. Rev. A 8 649
[45] Karim K R and Logan L1999 J. Quant. Spectrosc. Radiat. Transfer 61 659
[46] Goldsztejn G, Marchenko T, Püttner R, Jornel L, Guillemin R, Carniato S, Selles P, Travnikova O, Céolin D, Lago A F, Feifel R, Lablanquie P, Piancastelli M N, Penent F and Simon M2016 Phys. Rev. Lett. 117 133001
[47] Deng P and Jiang G2019 Chin. Phys. B 28 063203
[48] Huang X C, Kong X J, Li T J, Ma Z R, Wang H C, Liu G C, Wang Z S, Li W B and Zhu L F2021 Phys. Rev. Res. 3 033063
[1] A non-quasi-static model for nanowire gate-all-around tunneling field-effect transistors
Bin Lu(芦宾), Xin Ma(马鑫), Dawei Wang(王大为), Guoqiang Chai(柴国强),Linpeng Dong(董林鹏), and Yuanhao Miao(苗渊浩). Chin. Phys. B, 2023, 32(6): 068501.
[2] Theoretical study of the enhancement of saturable absorption of Kr under x-ray free-electron laser
Jiaxin Ye(叶佳鑫), Yixuan Yang(杨怡璇), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(5): 053202.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[7] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[8] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[9] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[10] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[11] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[12] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[13] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[14] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[15] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
No Suggested Reading articles found!