Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057505    DOI: 10.1088/1674-1056/acbe2e

Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature

Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅)
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  By using first-principles electronic structure calculations, we predict a new two-dimensional half-metallic ferromagnet (2DHMF) with distorted square structure, i.e., the LiCrTe2 monolayer. The results show that the LiCrTe2 monolayer is dynamically, thermally, and mechanically stable, and takes a large in-plane magnetic anisotropy, a wide spin gap, a large magnetization, and a very high Curie temperature. Under a biaxial strain ranging from -5% to +5%, the ferromagnetism, half-metallicity, and high Curie temperature are maintained well. Both tensile and compressive strains can significantly increase the magnitude of the magnetocrystalline anisotropy energy (MAE) and a transition from in-plane easy-x(y)-axis to out-of-plane easy-z-axis occurs when the compressive strain exceeds 1%. Our systematic study of the LiCrTe2 monolayer enables its promising applications in spintronics.
Keywords:  two-dimensional half-metallic ferromagnet      electronic structures      first-principles calculations  
Received:  07 December 2022      Revised:  04 February 2023      Accepted manuscript online:  23 February 2023
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0308603) and the National Natural Science Foundation of China (Grant No. 11934020). Computational resources were provided by the Physical Laboratory of High Performance Computing at Renmin University of China.
Corresponding Authors:  Huan-Cheng Yang, Zhong-Yi Lu     E-mail:;

Cite this article: 

Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅) Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature 2023 Chin. Phys. B 32 057505

[1] Hirohata A, Yamada K, Nakatani Y, Prejbeanu L, Diény B, Pirro P and Hillebrands B 2020 J. Magnet. Magnet. Mater. 509 166711
[2] Li X and Yang J 2016 Natl. Sci. Rev. 3 365
[3] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2016 Nature 546 270
[4] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[5] Kuklin A V, Shostak S A and Kuzubov A A 2018 J. Phys. Chem. Lett. 9 1422
[6] Ghosh A, Kar M, Majumder C and Sarkar P 2021 Mat. Sci. Eng. B 272 115379
[7] Wang B, Zhang Y, Ma L, Wu Q, Guo Y, Zhang X and Wang J 2019 Nanoscale 11 4204
[8] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[9] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[10] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[11] Blöchl P E 1994 Phys. Rev. B 50 17953
[12] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[13] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[14] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys. Condens. Matter 9 767
[15] Xu W, Ali S, Jin Y, Wu X and Xu H 2020 ACS Appl. Electron. Mater. 2 3853
[16] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[17] Nosé S 1984 J. Chem. Phys. 81 511
[18] Kan M, Adhikari S and Sun Q 2014 Phys. Chem. Chem. Phys. 16 4990
[19] Kan M, Zhou J, Sun Q, Kawazoe Y and Jena P 2013 J. Phys. Chem. Lett. 4 3382
[20] Liu L, Ren X, Xie J, Cheng B, Liu W, An T, Qin H and Hu J 2019 Appl. Surf. Sci. 480 300
[21] Millican J N, Phelan D, Thomas E L, Leão J B and Carpenter E 2009 Solid State Commun. 149 707
[22] Wang V, Tang G, Wang R T, Liu Y C, Mizuseki H, Kawazoe Y, Nara J and Geng W T 2018 arXiv 1806.04285
[23] Booth T J, Blake P, Nair R R, Jiang D, Hill E W, Bangert U, Bleloch A, Gass M, Novoselov K S, Katsnelson M I and Geim A K 2008 Nano Lett. 8 2442
[24] Liu J, Sun Q, Kawazoe Y and Jena P 2016 Phys. Chem. Chem. Phys. 18 8777
[25] Li X and Yang J 2014 J. Mater. Chem. C 2 7071
[26] Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z and Zhao J 2021 Appl. Phys. Rev. 8 031305
[27] Daalderop G H O, Kelly P J and Schuurmans M F H 1990 Phys. Rev. B 41 11919
[28] Ma F, Lu Z Y and Xiang T 2008 Phys. Rev. B 78 224517
[29] Ma F, Ji W, Hu J, Lu Z Y and Xiang T 2009 Phys. Rev. Lett. 102 177003
[30] Xiang H J, Kan E J, Wei S H, Whangbo M H and Gong X G 2011 Phys. Rev. B 84 224429
[31] Li, P, Cui Q, Ga Y, Liang J and Yang H 2022 Phys. Rev. B 106 24419
[32] Zhou Y, Wang Z, Yang P, Zu X, Yang L, Sun X and Gao F 2012 ACS Nano 6 9727
[33] Joe M, Lee H, Alyörük M M, Lee J, Kim S Y, Lee C and Lee J H 2017 J. Phys. Condens. Matter 29 405801
[1] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[2] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[13] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[14] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[15] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
No Suggested Reading articles found!