1 CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China; 4 Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China; 5 College of Engineering and Applied Science, Nanjing University, Nanjing 210093, China; 6 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 7 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China; 8 School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
Abstract We present a magnetic scanning microscope equipped with a nitrogen-vacancy (NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous strain-tuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described. In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and x-ray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 81788101, T2125011, 11861161004, and 12104447), the National Key R&D Program of China (Grant No. 2018YFA0306600), the Chinese Academy of Sciences (Grant Nos. XDC07000000, GJJSTD20200001, QYZDY-SSW-SLH004, Y201984, and YSBR-068), Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0303204 and 2021ZD0302200), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000), Hefei Comprehensive National Science Center, China Postdoctoral Science Foundation (Grant No. 2020M671858), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:
Fazhan Shi, Jiangfeng Du
E-mail: fzshi@ustc.edu.cn;djf@ustc.edu.cn
Cite this article:
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰) A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter 2023 Chin. Phys. B 32 057504
[1] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature455 644 [2] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys.4 810 [3] Zhao Z, Ye X, Xu S, Yu P, Yang Z, Kong X, Wang Y, Xie T, Shi F and Du J 2022 Sub-nanotesla Sensitivity at the Nanoscale with a Single Spin [4] Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F and Wrachtrup J 2008 Nature455 648 [5] Tetienne J P, Hingant T, Kim J V, Diez L H, Adam J P, Garcia K, Roch J F, Rohart S, Thiaville A, Ravelosona D and Jacques V 2014 Science344 1366 [6] Gross I, Akhtar W, Garcia V, Martínez L J, Chouaieb S, Garcia K, Carrétéro C, Barthélémy A, Appel P, Maletinsky P, Kim J V, Chauleau J Y, Jaouen N, Viret M, Bibes M, Fusil S and Jacques V 2017 Nature549 252 [7] Hedrich N, Wagner K, Pylypovskyi O V, Shields B J, Kosub T, Sheka D D, Makarov D and Maletinsky P 2021 Nat. Phys.17 574 [8] Wörnle MS, Welter P, Giraldo M, Lottermoser T, Fiebig M, Gambardella P and Degen C L 2021 Phys. Rev. B103 094426 [9] Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D and Yacoby A 2018 Nat. Commun.9 2712 [10] Gross I, Akhtar W, Hrabec A, Sampaio J, Martínez L J, Chouaieb S, Shields B J, Maletinsky P, Thiaville A, Rohart S and Jacques V 2018 Phys. Rev. Mater.2 024406 [11] Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, lin He Q, Wu H, Li W, Jiang W, Han X, Li X, Bleszynski Jayich A C, Amiri P K and Wang K L 2018 Nano Lett.18 980 [12] Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F and Maletinsky P 2019 Science364 973 [13] Ku M J H, Zhou T X, Li Q, Shin Y J, Shi J K, Burch C, Anderson L E, Pierce A T, Xie Y, Hamo A, Vool U, Zhang H, Casola F, Taniguchi T, Watanabe K, Fogler M M, Kim P, Yacoby A and Walsworth R L 2020 Nature583 537 [14] Vool U, Hamo A, Varnavides G, Wang Y, Zhou T X, Kumar N, Dovzhenko Y, Qiu Z, Garcia C A C, Pierce A T, Gooth J, Anikeeva P, Felser C, Narang P and Yacoby A 2021 Nat. Phys.17 1216 [15] Nagel S R 2017 Rev. Mod. Phys.89 025002 [16] Zang Y, et al. 2022 Adv. Mater.34 2105778 [17] Han L, Fang Y, Zhao Y, Zang Y, Gu Z, Nie Y and Pan X 2020 Adv. Mater. Interfaces7 1901604 [18] Kavatamane V K, Duan D, Arumugam S R, Raatz N, Pezzagna S, Meijer J and Balasubramanian G 2019 New J. Phys.21 103036 [19] Badilita V, Meier R C, Spengler N, Wallrabe U, Utz M and Korvink J G 2012 Soft Matter8 10583 [20] Tokarev A, Yatvin J, Trotsenko O, Locklin J and Minko S 2016 Advanced Functional Materials26 3761 [21] Lum G Z, Ye Z, Dong X, Marvi H, Erin O, Hu W and Sitti M 2016 Proc. Natl. Acad. Sci. USA113 E6007 [22] Erb R M, Martin J J, Soheilian R, Pan C and Barber J R 2016 Advanced Functional Materials26 3859 [23] Ding Z, Sun Y, Zheng N, Ma X, Wang M, Zang Y, Yu P, Wang P, Wang Y, Yang Y, Nie Y, Shi F and Du J 2022 Observation of uniaxial strain tuned spin cycloid in a freestanding BiFeO3 film [24] Guo M, Wang M, Wang P, Wu D, Ye X, Yu P, Huang Y, Shi F, Wang Y and Du J 2021 Rev. Sci. Instrum.92 055001 [25] Jia W, Shi Z, Qin X, Rong X and Du J 2018 Rev. Sci. Instrum.89 064705 [26] Dréeau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F and Jacques V 2011 Phys. Rev. B84 195204 [27] Haykal A, Fischer J, Akhtar W, Chauleau J Y, Sando D, Finco A, Godel F, Birkhöolzer Y A, Carrétéro C, Jaouen N, Bibes M, Viret M, Fusil S, Jacques V and Garcia V 2020 Nat. Commun.11 1704 [28] Bakaul S R, Prokhorenko S, Zhang Q, Nahas Y, Hu Y, Petford-Long A, Bellaiche L and Valanoor N 2021 Adv. Mater.33 2105432 [29] Fasolino A, Los J H and Katsnelson M I 2007 Nat. Mater.6 858 [30] Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y and Pan X 2019 Nature570 87 [31] Sando D, Han M, Govinden V, Paull O, Appert F, Carrétéro C, Fischer J, Barthélémy A, Bibes M, Garcia V, Fusil S, Dkhil B, Juraszek J, Zhu Y, Ma X and Nagarajan V 2020 Advanced Functional Materials30 2000343 [32] Sando D, et al. 2013 Nat. Mater.12 641
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.